Femtosecond pulses circulating in a synchronously driven fiber ring cavity have complex amplitude and phase profiles that can change completely from one round-trip to the next. We use a recently developed technique, combining dispersive Fourier transformation) with spectral interferometry, to reconstruct the spectral amplitude and phase at each round-trip and, thereby, follow in detail the pulse reorganization that occurs. We focus on two different regimes: a period-two regime in which the pulse alternates between two distinct states and a highly complex regime. We characterize the spectral amplitude and phase of the pulses in both regimes at a repetition rate of 75.6 MHz and find good agreement with modeling of the system based on numerical solutions of the generalized nonlinear Schrodinger equation with feedback. (C) 2016 Optical Society of America
Hybrid photonic-crystal fiber for single-mode phase matched generation of third harmonic and photon triplets
Andrea Cavanna,
Felix Just,
Xin Jiang,
Gerd Leuchs,
Maria V. Chekhova,
Philip St. J. Russell,
Nicolas Y. Joly
All-fiber systems for third harmonic generation are of great interest because they can be used for the inverse process, namely, the generation of entangled photon triplets. Usually, chromatic dispersion prevents phase matching between the incident and generated radiation when they are both guided in an LP01-like mode. Here, we present a hybrid photonic crystal fiber that has been designed for phase matched third harmonic generation from 1596 to 532 nm in single-lobed modes. The third harmonic radiation is guided by an all-solid bandgap microstructure, while the pump frequency is confined by conventional total internal reflection. The fiber is also suitable for the generation of photon triplet states.
Solid-core and hollow-core photonic crystal fiber for generation of bright ultraviolet light (Conference Presentation)
Nicolas Y. Joly,
Xin Jiang,
John C. Travers,
Alexey Ermolov,
Philip St. J. Russell
UV and Higher Energy Photonics: From Materials to Applications
UNSP 992608
(2016)
| Journal
Reducing losses in solid-core photonic crystal fibers using chlorine
dehydration
Michael H. Frosz,
Goran Ahmed,
Nadezda Lapshina,
Ralf Keding,
Fehim Babic,
Nicolas Y. Joly,
Philip St. J. Russell
Guiding 2.94 mu m using low-loss microstructured antiresonant
triangular-core fibers
Yang Chen,
Mohammed F. Saleh,
Nicolas Y. Joly,
Fabio Biancalana
JOURNAL OF APPLIED PHYSICS
119
(14)
143104
(2016)
| Journal
We introduce a new simple design of hollow-core microstructured fiber targeted to guide mid-infrared light at a wavelength of 2.94 mu m. The fiber has a triangular-core supported via silica-glass webs enclosed by a large hollow capillary tube. The fiber specific dimensions are determined by the anti-resonant guiding mechanism. For a triangular-core with side length 100 mu m, the fiber has a minimum transmission loss 0.08 +/- 0.005 dB/m and dispersion 2.3 ps/km/nm at the operational wavelength of 2.94 mu m. (C) 2016 AIP Publishing LLC.
Supercontinuum generation in ZBLAN glass photonic crystal fiber with six nanobore cores
Xin Jiang,
Nicolas Y. Joly,
Martin A. Finger,
Fehim Babic,
Meng Pang,
Rafal Sopalla,
Michael H. Frosz,
Samuel Poulain,
Marcel Poulain, et al.
Since 2021: Head of the microstructured optical fibres independent research group at the Max-Planck Institute for the Science of Light in Erlangen, Germany
Since 2009: Associate professor at the Univ. of Erlangen-Nuremberg in Germany
2005 – 2008: Maître de conférences at the Univ. of Lille in France
Education background
2012: Habilitation at the Ecole Normale Supérieure of Cachan (France) Title: Supercontinuum generation using pulses propagating in photonic crystal fibres, Defended in July. 10th 2012. Thesis adviser: Prof. Dr. Joseph Zyss.
2002-2005: Post-doctoral fellow at the University of Bath (UK) in the group of Prof. Philip Russell
1999-2002: PhD with honors (“Félicitations du jury”) at the laboratory of Physics of Lasers, Atoms, and Molecules (PhLAM) at the University of Lille (France) Title: Instabilities in pulsed mode-locked lasers: techniques for observation and control Defended on Sept. 23rd 2002. Thesis adviser: Prof. Dr. Serge Bielawski.
Awards & appointments
Since 2023: Advisor of the Erlangen Optica Student Chapter
Since 2021: Scientific coordinator of the Internation Max Planck School for the Physics of Light (IMPRS-PL)
Since 2020: Senior member of Optical Society of America (OSA)
Since 2019: Fellow of the Max Planck School of Photonics (MPSP) and member of the selection committee
Since 2016: Fellow of the Max Planck Center for Extreme and Quantum Photonics, Ottawa, Canada
1999: MENRT scholarship from the French ministry of Research to perform his doctoral degree at the University of Lille from 1999 to 2002
1998: Awarded a CIME scholarship from AUF (Agence universitaire de la Francophonie) to perform his Master study at Laval University (Québec) in 1998
Professional activities
2024: Member of the Technical Program Committee for the SPIE Photonics Europe in Strasbourg
Since 2022: Associate Editor of Opt. Express
2017: General chair of the 1st Sino-German symposium on fiber photonics for light-matter interaction in Shanghai, China
2017 – 2018: Member of the Technical Program Committee for SPIE UV and higher energy photonic
2013 – 2017: Member of Technical Program Committee for CLEO US (OSA)
2015: co-Chair of the 2nd Siegman International School of Laser (OSA)
Since 2015: Member of the Technical Program Committee for WSOF (OSA) in Hong-Kong (2015), Limasol in Cypris (2017), Adelaide in Australia (2022), and in Prague in Czech Republic (2025)
Since 20214: Member of the Student Commission of the internation Master of Advanced Optics and Technologies (MAOT)
2013: Topical session at PIERS (Progress in Electromagnetics Research Symposium) in Stockholm
2011: International conference on Nonlinear optics and complexity in photonic crystal fibers and nanostructures in Erice, in Sicily
2011: 14th International SAOT workshop on Fiber laser, sensors and materials at Reicheschwand, Germany
Since 2009: External expert for the evaluation of proposals from ANR (National agency of research in France), the Polish Society of Science, DFG (National agency of research in Germany) and ERC (European Research Council)
Since 2009: Supervisor of 13 PhD students, 2 post-docs, 14 MSc students
Ongoing projects
DFG project JO 1090/8-3 – OrbitFlySens [FAU] Orbiting flying particle sensor (with Bernhard Schmauß, FAU) – 2025-2028
BayFrance FK-34-2024 [FAU] Real-time detection of Terahertz signals using ultrashort lasers Mobility allowance – collaboration with University of Lille - 2025
BayFrance FK-35-2024 [FAU] Exploring chiral fibers for new-type of polarization-resolved endoscopy Mobility allowance – collaboration with University of Marseille – 2025
DFG project JO 1090/3-2 – Photon Triplets [FAU] Generation of photon triplets via three-photon parametric down-conversion (with Maria Chekhova) – 2024-2027
QuNet beta [MPL] 2021-2026
Max-Planck-School of Photonics (MPSP) [FAU] 2019-2025
DFG project JO 1090/6-1 -Twin Beams [FAU] Fiber source of entangled photons with giant tunable frequency separation (with Maria Chekhova) - 2021-2024
DFG project JO 1090/4-1 – Rydbergatoms in photonic crystal fibres [FAU] (with Robert Löw, University of Stuttgart) - 2019-2023
BayFrance FK-29-2018 [FAU] Frequency conversion of single-photon quantum sources using gas-filled hollow-core photonic crystal fibres Mobility allowance – collaboration with LKB, Ens Paris, France - 2018
DFG project JO 1090/3-1 – Photon Triplets [FAU] Generation of photon triplets via three-photon parametric down-conversion (with Maria Chekhova) – 2017-2020
BayFrance FK-38-2013 [FAU] Dynamical instabilities in photonic crystal fiber ring cavities synchronously pumped by femtosecond pulses Mobility allowance – collaboration with University of Lille, France - 2013-2014