A major challenge in third harmonic generation and its converse, parametric down-conversion, is how to arrange phase matching between signals at omega and 3 omega while maintaining a high nonlinear overlap. In this Letter, we present a design consisting of a nanostrand of glass with two hollow channels. The fundamental and third harmonic modal fields, enhanced in the region between the channels, have high nonlinear overlap, while the phase-matching wavelength can be coarse-tuned by gas pressure and fine-tuned by axial strain and mechanical twist, which, remarkably, have opposite effects. The ability to adjust the phase-matching condition may facilitate efficient generation of entangled photon triplets. (C) 2021 Optical Society of America.
Deep-UV-enhanced supercontinuum generated in a tapered gas-filled photonic crystal fiber
Mallika Irene Suresh,
Jonas Hammer,
Nicolas Y. Joly,
Philip Russell,
Francesco Tani
We present the use of a linearly down-tapered gas-filled hollow-core photonic crystal fiber in a single stage, pumped with pulses froma compact infrared (IR) laser source, to generate a supercontinuum (SC) carrying significant spectral power in the deep ultraviolet (UV) [200-300 nm]. The generated SC extends from the near IR down to similar to 213 nm with 0.58 mW/nm and down to similar to 220 nm with 0.83 mW/nm in the deepUV. (C) 2021 Optical Society of America
Optical signatures of the coupled spin-mechanics of a levitated magnetic microparticle
Vanessa Wachter,
Victor A. S. V. Bittencourt,
Shangran Xie,
Sanchar Sharma,
Nicolas Joly,
Philip Russell,
Florian Marquardt,
Silvia Viola-Kusminskiy
Journal of the Optical Society of America B-Optical Physics
38
(12)
(2021)
| Journal
| PDF
We propose a platform that combines the fields of cavity optomagnonics and levitated optome-<br>chanics in order to control and probe the coupled spin-mechanics of magnetic dielectric particles. We theoretically study the dynamics of a levitated Faraday-active dielectric microsphere serving as an optomagnonic cavity, placed in an external magnetic field and driven by an external laser. We find that the optically driven magnetization dynamics induces angular oscillations of the particle with low associated damping. Further, we show that the magnetization and angular motion dynamics<br>can be probed via the power spectrum of the outgoing light. Namely, the characteristic frequencies attributed to the angular oscillations and the spin dynamics are imprinted in the light spectrum by two main resonance peaks. Additionally, we demonstrate that a ferromagnetic resonance setup with an oscillatory perpendicular magnetic field can enhance the resonance peak corresponding to<br>the spin oscillations and induce fast rotations of the particle around its anisotropy axis.
Fiber-based biphoton source with ultrabroad frequency tunability
Santiago López-Huidrobro,
Markus Lippl,
Nicolas Joly,
Maria Chekhova
Tunable biphotons are highly important for a wide range of quantum applications. For some applications, especially interesting are cases where two photons of a pair are far apart in frequency. Here, we report a tunable biphoton source based on a xenon-filled hollow-core photonic crystal fiber. Tunability is achieved by adjusting the pressure of the gas inside the fiber. This allows us to tailor the dispersion landscape of the fiber, overcoming the principal limitations of solid-core fiber-based biphoton sources. We report a maximum tunability of 120 THz for a pressure range of 4 bar with a continuous shift of 30 THz/bar. At 21 bar, the photons of a pair are separated by more than one octave. Despite the large separation, both photons have large bandwidths. At 17 bar, they form a very broad (110 THz) band around the frequency of the pump.
Tumbling and anomalous alignment of optically levitated anisotropic microparticles in chiral hollow-core photonic crystal fiber
Shangran Xie,
Abhinav Sharma,
Maria N. Romodina,
Nicolas Y. Joly,
Philip Russell
SCIENCE ADVANCES
7
(28)
eabf6053
(2021)
| Journal
| PDF
The complex tumbling motion of spinning nonspherical objects is a topic of enduring interest, both in popular culture and in advanced scientific research. Here, we report all-optical control of the spin, precession, and nutation of vaterite microparticles levitated by counterpropagating circularly polarized laser beams guided in chiral hollow-core fiber. The circularly polarized light causes the anisotropic particles to spin about the fiber axis, while, regulated by minimization of free energy, dipole forces tend to align the extraordinary optical axis of positive uniaxial particles into the plane of rotating electric field. The end result is that, accompanied by oscillatory nutation, the optical axis reaches a stable tilt angle with respect to the plane of the electric field. The results reveal new possibilities for manipulating optical alignment through rotational degrees of freedom, with applications in the control of micromotors and microgyroscopes, laser alignment of polyatomic molecules, and study of rotational cell mechanics.
Specialty Photonic Crystal Fibers and Their Applications
This year not only commemorates the 60th anniversary of nonlinear optics with the seminal experiment of second harmonic generation, but it is also the 30th anniversary of the invention of the photonic crystal fiber (PCF). Following their first practical demonstration in 1996, PCFs have rapidly evolved into an established platform for applications in both academic and industrial environments. Their unique ability to confine light in a far more versatile way than possible with conventional optical fibers facilitated the expansion of the multifaceted world of PCF to cover not only nonlinear optics, but also many other disparate fields such as interferometry, beam delivery, laser science, telecommunications, quantum optics, sensing, microscopy, and many others.
Online Monitoring of Microscale Liquid-Phase Catalysis Using in-Fiber Raman Spectroscopy
Florian Schorn,
Manfred Aubermann,
Richard Zeltner,
Marco Haumann,
Nicolas Y. Joly
We report on the use of hollow-core photonic crystal fibers to monitor the evolution of chemical reactions. The combination of tight confinement and long interaction length allows single-pass spectroscopic measurements using less than a microliter volume of chemicals with good accuracy. As a proof of principle, we used here nonlinear Raman spectroscopy for a reaction screening of the acidic catalyzed esterification of methanol and acetic acid.
Doppler optical frequency domain reflectometry for remote fiber sensing
Max Koeppel,
Abhinav Sharma,
Jasper Podschus,
Sanju Sundaramahalingam,
Nicolas Y. Joly,
Shangran Xie,
Philip Russell,
Bernhard Schmauss
Optics Express
29
(10)
14615-14629
(2021)
| Journal
| PDF
Coherent optical frequency domain reflectometry has been widely used to locate static reflectors with high spatial resolution. Here, we present a new type of Doppler optical frequency domain reflectometry that offers simultaneous measurement of the position and speed of moving objects. The system is exploited to track optically levitated "flying" particles inside a hollow-core photonic crystal fiber. As an example, we demonstrate distributed temperature sensing with sub-mm-scale spatial resolution and a standard deviation of similar to 10 degrees C up to 200 degrees C. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
Scientific career
Since 2021: Head of the microstructured optical fibres independent research group at the Max-Planck Institute for the Science of Light in Erlangen, Germany
Since 2009: Associate professor at the Univ. of Erlangen-Nuremberg in Germany
2005 – 2008: Maître de conférences at the Univ. of Lille in France
Education background
2012: Habilitation at the Ecole Normale Supérieure of Cachan (France) Title: Supercontinuum generation using pulses propagating in photonic crystal fibres, Defended in July. 10th 2012. Thesis adviser: Prof. Dr. Joseph Zyss.
2002-2005: Post-doctoral fellow at the University of Bath (UK) in the group of Prof. Philip Russell
1999-2002: PhD with honors (“Félicitations du jury”) at the laboratory of Physics of Lasers, Atoms, and Molecules (PhLAM) at the University of Lille (France) Title: Instabilities in pulsed mode-locked lasers: techniques for observation and control Defended on Sept. 23rd 2002. Thesis adviser: Prof. Dr. Serge Bielawski.
Awards & appointments
Since 2023: Advisor of the Erlangen Optica Student Chapter
Since 2021: Scientific coordinator of the Internation Max Planck School for the Physics of Light (IMPRS-PL)
Since 2020: Senior member of Optical Society of America (OSA)
Since 2019: Fellow of the Max Planck School of Photonics (MPSP) and member of the selection committee
Since 2016: Fellow of the Max Planck Center for Extreme and Quantum Photonics, Ottawa, Canada
1999: MENRT scholarship from the French ministry of Research to perform his doctoral degree at the University of Lille from 1999 to 2002
1998: Awarded a CIME scholarship from AUF (Agence universitaire de la Francophonie) to perform his Master study at Laval University (Québec) in 1998
Professional activities
2024: Member of the Technical Program Committee for the SPIE Photonics Europe in Strasbourg
Since 2022: Associate Editor of Opt. Express
2017: General chair of the 1st Sino-German symposium on fiber photonics for light-matter interaction in Shanghai, China
2017 – 2018: Member of the Technical Program Committee for SPIE UV and higher energy photonic
2013 – 2017: Member of Technical Program Committee for CLEO US (OSA)
2015: co-Chair of the 2nd Siegman International School of Laser (OSA)
Since 2015: Member of the Technical Program Committee for WSOF (OSA) in Hong-Kong (2015), Limasol in Cypris (2017), Adelaide in Australia (2022), and in Prague in Czech Republic (2025)
Since 20214: Member of the Student Commission of the internation Master of Advanced Optics and Technologies (MAOT)
2013: Topical session at PIERS (Progress in Electromagnetics Research Symposium) in Stockholm
2011: International conference on Nonlinear optics and complexity in photonic crystal fibers and nanostructures in Erice, in Sicily
2011: 14th International SAOT workshop on Fiber laser, sensors and materials at Reicheschwand, Germany
Since 2009: External expert for the evaluation of proposals from ANR (National agency of research in France), the Polish Society of Science, DFG (National agency of research in Germany) and ERC (European Research Council)
Since 2009: Supervisor of 13 PhD students, 2 post-docs, 14 MSc students
Ongoing projects
DFG project JO 1090/8-3 – OrbitFlySens [FAU] Orbiting flying particle sensor (with Bernhard Schmauß, FAU) – 2025-2028
BayFrance FK-34-2024 [FAU] Real-time detection of Terahertz signals using ultrashort lasers Mobility allowance – collaboration with University of Lille - 2025
BayFrance FK-35-2024 [FAU] Exploring chiral fibers for new-type of polarization-resolved endoscopy Mobility allowance – collaboration with University of Marseille – 2025
DFG project JO 1090/3-2 – Photon Triplets [FAU] Generation of photon triplets via three-photon parametric down-conversion (with Maria Chekhova) – 2024-2027
QuNet beta [MPL] 2021-2026
Max-Planck-School of Photonics (MPSP) [FAU] 2019-2025
DFG project JO 1090/6-1 -Twin Beams [FAU] Fiber source of entangled photons with giant tunable frequency separation (with Maria Chekhova) - 2021-2024
DFG project JO 1090/4-1 – Rydbergatoms in photonic crystal fibres [FAU] (with Robert Löw, University of Stuttgart) - 2019-2023
BayFrance FK-29-2018 [FAU] Frequency conversion of single-photon quantum sources using gas-filled hollow-core photonic crystal fibres Mobility allowance – collaboration with LKB, Ens Paris, France - 2018
DFG project JO 1090/3-1 – Photon Triplets [FAU] Generation of photon triplets via three-photon parametric down-conversion (with Maria Chekhova) – 2017-2020
BayFrance FK-38-2013 [FAU] Dynamical instabilities in photonic crystal fiber ring cavities synchronously pumped by femtosecond pulses Mobility allowance – collaboration with University of Lille, France - 2013-2014