Flying Particle Thermosensor in Hollow-Core Fiber Based on Fluorescence Lifetime Measurements
Jasper Freitag,
Max Koeppel,
Maria N. Romodina,
Nicolas Joly,
Bernhard Schmauß
IEEE Journal of Selected Topics in Quantum Electronics
30
(6)
5600409
(2023)
| Journal
| PDF
Thermosensitive fluorescence lifetime measurements enable accurate thermometry independent of intensity fluctuations along the optical path. Here, we report lifetime-based temperature measurements of a single europium-doped particle optically trapped in an air-filled hollow-core fiber. A frequency-domain fluorescence lifetime measurement setup was integrated into a dual-beam optical trap. The measured apparent lifetime shows a linear temperature dependence of −1.8 µs/K for excitation at 400Hz . The results were repeatable over multiple cooling and heating cycles. In addition to temperature sensing, the influence of the high-power trapping laser on the measured apparent lifetime and fluorescence intensity was investigated. The observed laser-induced particle heating can be exploited to increase the fluorophore's sensitivity and operating range for low-temperature sensing. Fluorescence lifetime measurements of optically trapped particles inside a hollow-core fiber are promising for temperature sensing with micrometer spatial resolution over meter-scale distances.
Experimental Optical Simulator of Reconfigurable and Complex Quantum Environment
P. Renault,
J. Nokkala,
G. Roeland,
Nicolas Y. Joly,
R. Zambrini,
S. Maniscalco,
J. Piilo,
N. Treps,
V. Parigi
No quantum system can be considered totally isolated from its environment. In most cases the interaction between the system of interest and the external degrees of freedom deeply changes its dynamics, as described by open quantum system theory. Nevertheless engineered environment can be turned into beneficial effects for some quantum information tasks. Here we demonstrate an optical simulator of a quantum system coupled to an arbitrary and reconfigurable environment built as a complex network of quantum interacting systems. We experimentally retrieve typical features of open quantum system dynamics like the spectral density and quantum non-Markovianity, by exploiting squeezing and entanglement correlation of a continuous-variable optical platform. This opens the way to the experimental tests of open quantum systems in reconfigurable environments that are relevant in, among others, quantum information, quantum thermodynamics, quantum transport, and quantum synchronization.
Low-noise supercontinuum generation in chiral all-normal dispersion photonic crystal fibers
Markus Lippl,
Michael H. Frosz,
Nicolas Y. Joly
Optics Letters
48
(20)
5297-5300
(2023)
| Journal
| PDF
We present the advantages of supercontinuum generation in chiral, therefore circularly birefringent, all-normal dispersion fibers. Due to the absence of nonlinear power transfer between the polarization eigenstates of the fiber, chiral all-normal dispersion fibers do not exhibit any polarization instabilities and thus are an ideal platform for a low-noise supercontinuum generation. By pumping a chiral all-normal dispersion fiber at 802 nm, we obtained an octave-spanning, robustly circularly polarized supercontinuum with a low noise.
Tunable fiber source of entangled UV-C and infrared photons
Santiago López-Huidrobro,
Noureddin Mohammad,
Maria V. Chekhova,
Nicolas Y. Joly
Pairs of entangled photons—biphotons—are indispensable in quantum applications. However, some important spectral ranges, like the ultraviolet, have been inaccessible to them so far. Here, we use four-wave mixing in a xenon-filled single-ring photonic crystal fiber to generate biphotons with one of the photons in the ultraviolet and its entangled partner in the infrared spectral range. We tune the biphotons in frequency by varying the gas pressure inside the fiber and thus tailoring the fiber dispersion landscape. The ultraviolet photons are tunable from 271 nm to 231 nm and their entangled partners, from 764 nm to 1500 nm, respectively. Tunability up to 192 THz is achieved by adjusting the gas pressure by only 0.68 bar. At 1.43 bar, the photons of a pair are separated by more than 2 octaves. The access to ultraviolet wavelengths opens the possibility for spectroscopy and sensing with undetected photons in this spectral range.
Single-pulse terahertz spectroscopy monitoring sub-millisecond time dynamics at a rate of 50 kHz
Nicolas Couture,
Wei Cui,
Markus Lippl,
Rachel Ostic,
Defi Junior Jubgang Fandio,
Eeswar Kumar Yalavarthi,
Aswin Vishnuradhan,
Angela Gamouras,
Nicolas Y. Joly, et al.
Nature Communications
14
(1)
2595
(2023)
| Journal
| PDF
Slow motion movies allow us to see intricate details of the mechanical dynamics of complex phenomena. If the images in each frame are replaced by terahertz (THz) waves, such movies can monitor low-energy resonances and reveal fast structural or chemical transitions. Here, we combine THz spectroscopy as a non-invasive optical probe with a real-time monitoring technique to demonstrate the ability to resolve non-reproducible phenomena at 50k frames per second, extracting each of the generated THz waveforms every 20 μs. The concept, based on a photonic time-stretch technique to achieve unprecedented data acquisition speeds, is demonstrated by monitoring sub-millisecond dynamics of hot carriers injected in silicon by successive resonant pulses as a saturation density is established. Our experimental configuration will play a crucial role in revealing fast irreversible physical and chemical processes at THz frequencies with microsecond resolution to enable new applications in fundamental research as well as in industry.<br><br>
Measurement of Minute Liquid Volumes of Chiral Molecules Using In-Fiber Polarimetry
Florian Schorn,
Arabella Essert,
Yu Zhong,
Sahib Abdullayev,
Kathrin Castiglione,
Marco Haumann,
Nicolas Y. Joly
Analytical Chemistry
95
3204-3209
(2023)
| Journal
| PDF
We report an optofluidic method that enables to efficiently measure the enantiomeric excess of chiral molecules at low concentrations. The approach is to monitor the optical activity induced by a Kagome-lattice hollow core photonic crystal fiber filled with a sub-mu L volume of chiral compounds. The technique also allows monitoring the enzymatic racemization of Rmandelic acid.
Scientific career
Since 2021: Head of the microstructured optical fibres independent research group at the Max-Planck Institute for the Science of Light in Erlangen, Germany
Since 2009: Associate professor at the Univ. of Erlangen-Nuremberg in Germany
2005 – 2008: Maître de conférences at the Univ. of Lille in France
Education background
2012: Habilitation at the Ecole Normale Supérieure of Cachan (France) Title: Supercontinuum generation using pulses propagating in photonic crystal fibres, Defended in July. 10th 2012. Thesis adviser: Prof. Dr. Joseph Zyss.
2002-2005: Post-doctoral fellow at the University of Bath (UK) in the group of Prof. Philip Russell
1999-2002: PhD with honors (“Félicitations du jury”) at the laboratory of Physics of Lasers, Atoms, and Molecules (PhLAM) at the University of Lille (France) Title: Instabilities in pulsed mode-locked lasers: techniques for observation and control Defended on Sept. 23rd 2002. Thesis adviser: Prof. Dr. Serge Bielawski.
Awards & appointments
Since 2023: Advisor of the Erlangen Optica Student Chapter
Since 2021: Scientific coordinator of the Internation Max Planck School for the Physics of Light (IMPRS-PL)
Since 2020: Senior member of Optical Society of America (OSA)
Since 2019: Fellow of the Max Planck School of Photonics (MPSP) and member of the selection committee
Since 2016: Fellow of the Max Planck Center for Extreme and Quantum Photonics, Ottawa, Canada
1999: MENRT scholarship from the French ministry of Research to perform his doctoral degree at the University of Lille from 1999 to 2002
1998: Awarded a CIME scholarship from AUF (Agence universitaire de la Francophonie) to perform his Master study at Laval University (Québec) in 1998
Professional activities
2024: Member of the Technical Program Committee for the SPIE Photonics Europe in Strasbourg
Since 2022: Associate Editor of Opt. Express
2017: General chair of the 1st Sino-German symposium on fiber photonics for light-matter interaction in Shanghai, China
2017 – 2018: Member of the Technical Program Committee for SPIE UV and higher energy photonic
2013 – 2017: Member of Technical Program Committee for CLEO US (OSA)
2015: co-Chair of the 2nd Siegman International School of Laser (OSA)
Since 2015: Member of the Technical Program Committee for WSOF (OSA) in Hong-Kong (2015), Limasol in Cypris (2017), Adelaide in Australia (2022), and in Prague in Czech Republic (2025)
Since 20214: Member of the Student Commission of the internation Master of Advanced Optics and Technologies (MAOT)
2013: Topical session at PIERS (Progress in Electromagnetics Research Symposium) in Stockholm
2011: International conference on Nonlinear optics and complexity in photonic crystal fibers and nanostructures in Erice, in Sicily
2011: 14th International SAOT workshop on Fiber laser, sensors and materials at Reicheschwand, Germany
Since 2009: External expert for the evaluation of proposals from ANR (National agency of research in France), the Polish Society of Science, DFG (National agency of research in Germany) and ERC (European Research Council)
Since 2009: Supervisor of 13 PhD students, 2 post-docs, 14 MSc students
Ongoing projects
DFG project JO 1090/8-3 – OrbitFlySens [FAU] Orbiting flying particle sensor (with Bernhard Schmauß, FAU) – 2025-2028
BayFrance FK-34-2024 [FAU] Real-time detection of Terahertz signals using ultrashort lasers Mobility allowance – collaboration with University of Lille - 2025
BayFrance FK-35-2024 [FAU] Exploring chiral fibers for new-type of polarization-resolved endoscopy Mobility allowance – collaboration with University of Marseille – 2025
DFG project JO 1090/3-2 – Photon Triplets [FAU] Generation of photon triplets via three-photon parametric down-conversion (with Maria Chekhova) – 2024-2027
QuNet beta [MPL] 2021-2026
Max-Planck-School of Photonics (MPSP) [FAU] 2019-2025
DFG project JO 1090/6-1 -Twin Beams [FAU] Fiber source of entangled photons with giant tunable frequency separation (with Maria Chekhova) - 2021-2024
DFG project JO 1090/4-1 – Rydbergatoms in photonic crystal fibres [FAU] (with Robert Löw, University of Stuttgart) - 2019-2023
BayFrance FK-29-2018 [FAU] Frequency conversion of single-photon quantum sources using gas-filled hollow-core photonic crystal fibres Mobility allowance – collaboration with LKB, Ens Paris, France - 2018
DFG project JO 1090/3-1 – Photon Triplets [FAU] Generation of photon triplets via three-photon parametric down-conversion (with Maria Chekhova) – 2017-2020
BayFrance FK-38-2013 [FAU] Dynamical instabilities in photonic crystal fiber ring cavities synchronously pumped by femtosecond pulses Mobility allowance – collaboration with University of Lille, France - 2013-2014