Professor Philip St.J. Russell, FRS

Director of the Russell Division – Photonic Crystal Fibres

Professor Philip Russell is a founding Director of the Max-Planck Institute for the Science of Light (MPL), which began operations in January 2009. Since 2005 he has also held the Krupp Chair in Experimental Physics at the University of Erlangen-Nuremberg. He obtained his D.Phil. degree in 1979 at the University of Oxford, spending three years as a Research Fellow at Oriel College, Oxford. In 1982 and 1983 he was a Humboldt Fellow at the Technical University Hamburg-Harburg (Germany), and from 1984 to 1986 he worked at the University of Nice (France) and the IBM TJ Watson Research Center in Yorktown Heights, New York. From 1986 to 1996 he was based mainly at the University of Southampton, first of all in the Optical Fibre Group and then in the Optoelectronics Research Centre. From 1996 to 2005 he was professor in the Department of Physics at the University of Bath, where he established the Centre for Photonics and Photonic Materials. His research interests currently focus on scientific applications of photonic crystal fibres and related structures. He is a Fellow of the Royal Society and The Optical Society (OSA) and has won several international awards for his research including the 2000 OSA Joseph Fraunhofer Award/Robert M. Burley Prize, the 2005 Thomas Young Prize of the Institute for Physics (UK), the 2005 Körber Prize for European Science, the 2013 EPS Prize for Research into the Science of Light, the 2014 Berthold Leibinger Zukunftspreis and the 2015 IEEE Photonics Award. He was OSA's President in 2015, the International Year of Light.

 

2007

Numerical study of guided modes in arrays of metallic nanowires

C. G. Poulton, M. A. Schmidt, G. J. Pearce, G. Kakarantzas, P. St. J. Russell

OPTICS LETTERS 32 (12) 1647-1649 (2007) | Journal

We numerically investigate the band structure and guided modes within arrays of metallic nanowires. We show that bandgaps appear for a range of array geometries and that these can be used to guide light in these structures. Values of attenuation as low as 1.7 dB/cm are predicted for arrays of silver wires at communications wavelengths. This is more than 100 times smaller than the attenuation of the surface plasmon polariton modes on a single silver nanowire. (c) 2007 Optical Society of America.

Bound soliton pairs in photonic crystal fiber

A. Podlipensky, P. Szarniak, N. Y. Joly, C. G. Poulton, P. St. J. Russell

OPTICS EXPRESS 15 (4) 1653-1662 (2007) | Journal

We demonstrate experimentally the formation and stable propagation of bound soliton pairs in a highly nonlinear photonic crystal fiber. The bound pairs occur at a particular power as the consequence of high-order soliton fission. They propagate over long distances with constant inter-soliton frequency and time separation. During propagation, the soliton self-frequency shift causes the central frequency of the pairs to move towards longer wavelength. The formation and characteristics of the bound soliton pairs are confirmed numerically. We believe this to be the first experimental observation of such bound soliton pairs. (c) 2007 Optical Society of America.

Models for guidance in kagome-structured hollow-core photonic crystal fibres

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, P. St. J. Russell

OPTICS EXPRESS 15 (20) 12680-12685 (2007) | Journal

We demonstrate by numerical simulation that the general features of the loss spectrum of photonic crystal fibres (PCF) with a kagome structure can be explained by simple models consisting of thin concentric hexagons or rings of glass in air. These easily analysed models provide increased understanding of the mechanism of guidance in kagome PCF, and suggest ways in which the high-loss resonances in the loss spectrum may be shifted. (C) 2007 Optical Society of America.

Max-Planck-Zentren und -Schulen