Publikationen

2020

Broadband terahertz solid-state emitter driven by Yb:YAG thin-disk oscillator

Gaia Barbiero, Haochuan Wang, Jonathan Brons, Bo-Han Chen, Vladimir Pervak, Hanieh Fattahi

Journal of Physics B: Atomic, Molecular and Optical Physics 53 (12) 125601 (2020) | Journal | PDF

We report on a table-top, high-power, terahertz (THz) solid-state emitter driven by few-cycle near-infrared pulses at 16 MHz repetition rate in gallium phosphide (GaP) crystals. Two external nonlinear multi-pass cells are used to shorten the output of a home-built, 100W, 265 fs, 6.2 mu J Yb:YAG thin-disk oscillator, operating at 1030 nm, to 18 fs with 3.78 mu J pulse energy. The broadband spectrum of the THz driver allowed for the extension of the THz cutoff frequency to 5.7 THz at the dynamic range of 10(4). By employing the high-power Yb:YAG thin-disk oscillator, the low efficiency of the THz generation is circumvented, resulting in the generation of up to 100 mu W, multi-octave THz pulses at 5 THz cutoff frequency in a 2 mm thick GaP crystal.

Multi-octave, CEP-stable source for high-energy field synthesis

Ayman Alismail, Haochuang Wang, Gaia Barbiero, Najd Altwaijry, Syed Ali Hussain, Volodymyr Pervak, Wolfgang Schweinberger, Abdallah M. Azzeer, Ferenc Krausz, et al.

Science Advances 6 (7) eaax3408 (2020) | Journal | PDF

Multi-octave, CEP-stable source for high-energy field synthesis

Ayman Alismail, Haochuang Wang, Gaia Barbiero, Najd Altwaijry, Syed Ali Hussain, Volodymyr Pervak, Wolfgang Schweinberger, Abdallah M. Azzeer, Ferenc Krausz, et al.

Science Advances 6 (7) eaax3408 (2020) | Journal

The development of high-energy, high-power, multi-octave light transients is currently the subject of intense research driven by emerging applications in attosecond spectroscopy and coherent control. We report on a phase-stable, multi-octave source based on a Yb:YAG amplifier for light transient generation. We demonstrate the amplification of a two-octave spectrum to 25 μJ of energy in two broadband amplification channels and their temporal compression to 6 and 18 fs at 1 and 2 μm, respectively. In this scheme, due to the intrinsic temporal synchronization between the pump and seed pulses, the temporal jitter is restricted to long-term drift. We show that the intrinsic stability of the synthesizer allows subcycle detection of an electric field at 0.15 PHz. The complex electric field of the 0.15-PHz pulses and their free induction decay after interaction with water molecules are resolved by electro-optic sampling over 2 ps. The scheme is scalable in peak and average power.

Kontakt

Forschungsgruppe Hanieh Fattahi

Max-Planck-Institut für die Physik des Lichts
Staudtstr. 2
91058 Erlangen

hanieh.fattahi@mpl.mpg.de

Max-Planck-Zentren und -Schulen