Using Saturation Effects in a Nonlinear Amplifying Loop Mirror for
Multilevel Phase-Preserving Amplitude Regeneration
Tobias Roethlingshoefer, Georgy Onishchukov, Bernhard Schmauss, Gerd Leuchs
2011 13TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS
(ICTON)
(2011)
The influence of amplifier gain saturation in nonlinear amplifying loop mirror on simultaneous phase-preserving regeneration of two power states has been studied. Numerical simulations have shown an improvement of up to 4 dB for the first, low-power state and 8 dB for the second high-power state. Compared to the linear amplifier case an improvement of 3 dB for the second power state has been achieved.
Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal
fibers [Invited]
John C. Travers, Wonkeun Chang, Johannes Nold, Nicolas Y. Joly, Philip St. J. Russell
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS
28(12)
A11-A26
(2011)
We review the use of hollow-core photonic crystal fibers (PCFs) in the field of ultrafast gas-based nonlinear optics, including recent experiments, numerical modeling, and a discussion of future prospects. Concentrating on broadband guiding kagome-style hollow-core PCF, we describe its potential for moving conventional nonlinear fiber optics both into extreme regimes-such as few-cycle pulse compression and efficient deep ultraviolet wavelength generation-and into regimes hitherto inaccessible, such as single-mode guidance in a photoionized plasma and high-harmonic generation in fiber. (C) 2011 Optical Society of America
Graphical calculus for Gaussian pure states
Nicolas C. Menicucci, Steven T. Flammia, Peter van Loock
We provide a unified graphical calculus for all Gaussian pure states, including graph transformation rules for all local and semilocal Gaussian unitary operations, as well as local quadrature measurements. We then use this graphical calculus to analyze continuous-variable (CV) cluster states, the essential resource for one-way quantum computing with CV systems. Current graphical approaches to CV cluster states are only valid in the unphysical limit of infinite squeezing, and the associated graph transformation rules only apply when the initial and final states are of this form. Our formalism applies to all Gaussian pure states and subsumes these rules in a natural way. In addition, the term "CV graph state" currently has several inequivalent definitions in use. Using this formalism we provide a single unifying definition that encompasses all of them. We provide many examples of how the formalism may be used in the context of CV cluster states: defining the "closest" CV cluster state to a given Gaussian pure state and quantifying the error in the approximation due to finite squeezing; analyzing the optimality of certain methods of generating CV cluster states; drawing connections between this graphical formalism and bosonic Hamiltonians with Gaussian ground states, including those useful for CV one-way quantum computing; and deriving a graphical measure of bipartite entanglement for certain classes of CV cluster states. We mention other possible applications of this formalism and conclude with a brief note on fault tolerance in CV one-way quantum computing.
Disentanglement in bipartite continuous-variable systems
F. A. S. Barbosa, A. J. de Faria, A. S. Coelho, K. N. Cassemiro, A. S. Villar, P. Nussenzveig, M. Martinelli
Entanglement in bipartite continuous-variable systems is investigated in the presence of partial losses such as those introduced by a realistic quantum communication channel, e. g., by propagation in an optical fiber. We find that entanglement can vanish completely for partial losses, in a situation reminiscent of so-called entanglement sudden death. Even states with extreme squeezing may become separable after propagation in lossy channels. Having in mind the potential applications of such entangled light beams to optical communications, we investigate the conditions under which entanglement can survive for all partial losses. Different loss scenarios are examined, and we derive criteria to test the robustness of entangled states. These criteria are necessary and sufficient for Gaussian states. Our study provides a framework to investigate the robustness of continuous-variable entanglement in more complex multipartite systems.
Pressure-assisted melt-filling and optical characterization of Au
nano-wires in microstructured fibers
H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, P. St. J. Russell
We report a novel splicing-based pressure-assisted melt-filling technique for creating metallic nanowires in hollow channels in microstructured silica fibers. Wires with diameters as small as 120 nm (typical aspect ration 50:1) could be realized at a filling pressure of 300 bar. As an example we investigate a conventional single-mode step-index fiber with a parallel gold nanowire (wire diameter 510 nm) running next to the core. Optical transmission spectra show dips at wavelengths where guided surface plasmon modes on the nanowire phase match to the glass core mode. By monitoring the side-scattered light at narrow breaks in the nanowire, the loss could be estimated. Values as low as 0.7 dB/mm were measured at resonance, corresponding to those of an ultra-long-range eigenmode of the glass-core/nanowire system. By thermal treatment the hollow channel could be collapsed controllably, permitting creation of a conical gold nanowire, the optical properties of which could be monitored by side-scattering. The reproducibility of the technique and the high optical quality of the wires suggest applications in fields such as nonlinear plasmonics, near-field scanning optical microscope tips, cylindrical polarizers, optical sensing and telecommunications. (C) 2011 Optical Society of America
Birefringence and dispersion of cylindrically polarized modes in
nanobore photonic crystal fiber
T. G. Euser, M. A. Schmidt, N. Y. Joly, C. Gabriel, C. Marquardt, L. Y. Zang, M. Foertsch, P. Banzer, A. Brenn, et al.
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS
28(1)
193-198
(2011)
|
Journal
We demonstrate experimentally and theoretically that a nanoscale hollow channel placed centrally in the solid-glass core of a photonic crystal fiber strongly enhances the cylindrical birefringence (the modal index difference between radially and azimuthally polarized modes). Furthermore, it causes a large split in group velocity and group velocity dispersion. We show analytically that all three parameters can be varied over a wide range by tuning the diameters of the nanobore and the core. (C) 2010 Optical Society of America
A calibration method for broad-bandwidth cavity enhanced absorption
spectroscopy performed with supercontinuum radiation
T. Laurila, I. S. Burns, J. Hult, J. H. Miller, C. F. Kaminski
APPLIED PHYSICS B-LASERS AND OPTICS
102(2)
271-278
(2011)
|
Journal
An efficient calibration method has been developed for broad-bandwidth cavity enhanced absorption spectroscopy. The calibration is performed using phase shift cavity ring-down spectroscopy, which is conveniently implemented through use of an acousto-optic tunable filter (AOTF). The AOTF permits a narrowband portion of the SC spectrum to be scanned over the full high-reflectivity bandwidth of the cavity mirrors. After calibration the AOTF is switched off and broad-bandwidth CEAS can be performed with the same light source without any loss of alignment to the set-up. We demonstrate the merits of the method by probing transitions of oxygen molecules O(2) and collisional pairs of oxygen molecules (O(2))(2) in the visible spectral range.
Gain Enhancement by Dielectric Horns in the Terahertz Band
Belen Andres-Garcia, Enrique Garcia-Munoz, Sebastian Bauerschmidt, Sascha Preu, Stefan Malzer, Gottfried H. Doehler, Lijun Wang, Daniel Segovia-Vargas
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
59(9)
3164-3170
(2011)
|
Journal
A new geometry for the design of antennas in the Terahertz band is presented. The structure is based on a horn antenna etched in the substrate and fed with a planar printed antenna used for generation of terahertz radiation, designed for the 200 GHz to 3 THz range. For the proposed antenna, the energy distribution through the substrate is reduced towards an increase in the gain of the system, at least, 8 dB in a 1: 10 bandwidth. The structure has been measured showing the expected behavior in the low band.
Resonant self-pulsations in coupled nonlinear microcavities
A different point of view on the phenomenon of self-pulsations is presented, which shows that they are a balanced state formed by two counteracting processes: beating of modes and bistable switching. A structure based on two coupled nonlinear microcavities provides a generic example of a system with enhanced ability to support this phenomenon. The specific design of such a structure in the form of multilayered media is proposed, and the coupled-mode theory is applied to describe its dynamical properties. It is emphasized that the frequency of self-pulsations is related to the frequency splitting between resonant modes and can be adjusted over a broad range.
Chemical and optical characterisation of atomic layer deposition
aluminium doped ZnO films for photovoltaics by glow discharge optical
emission spectrometry
S. W. Schmitt, G. Gamez, V. Sivakov, M. Schubert, S. H. Christiansen, J. Michler
JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY
26(4)
822-827
(2011)
|
Journal
Aluminium doped ZnO (AZO) alloy films produced by atomic layer deposition (ALD) are analysed by glow discharge optical emission spectrometry (GD-OES). A measurement procedure is established, to determine simultaneously thickness, mean chemical composition and refractive index of homogeneous films using GD-OES and profilometry measurements. The GD-OES measured Al contents of the AZO films lie below those expected for the realised ALD cycles. Determined refractive indices are of the same accuracy as ellipsometry measurements and are dependent on the film composition as well as on the wavelength of the spectral lines used for analysis. The findings support the use of GD-OES as an analysis technique in the development of photovoltaic thin films.
Publikationen des Max-Planck-Instituts für die Physik des Lichts
2011
Publikationen
MPL Newsletter
Bleiben Sie auf dem Laufenden mit unserem Newsletter!