Max-Planck-Forscher entwickeln den "ultimativen Zellsortierer"

Durch eine Kombination aus Bildgebung von verformten Zellen und künstlicher Intelligenz ist es Forscher*innen am Max-Planck-Institut für die Physik des Lichts und dem Max-Planck-Zentrum für Physik und Medizin in Erlangen gelungen, eine Hochgeschwindigkeitsmethode zur Identifikation und Sortierung von Zellen zu entwickeln, die ohne eine externe Markierung der Zellen auskommt. Die Methode wurde nun in der Fachzeitschrift Nature Methods veröffentlicht.

In Medizin und Biologie besteht ein großes Interesse an effizienten und kostengünstigen Methoden zur Identifizierung und Trennung verschiedener Zelltypen, beispielsweise für die medizinische Diagnostik oder für regenerative Therapien mithilfe von Stammzellen. Bislang wird dazu meist die sogenannte Durchflusszytometrie verwendet, bei der Zellen mit fluoreszierenden Antikörpern markiert und beim Durchfluss durch einen Kanal identifiziert werden. Diese Methode hat jedoch ihre Schwachstellen: Sie ist nicht nur relativ teuer und zeitintensiv, sondern auch die Antikörper selbst sind problematisch. Da sie körperfremd sind, können sie die Eigenschaften der Zellen, an die sie andocken, verändern und etwa bei einer Injektion in den Körper Schwierigkeiten bereiten. Auch ist die Identifikation von Zellen bei der Durchflusszytometrie nicht immer fehlerfrei.

Als zusätzliches Unterscheidungsmerkmal lassen sich deshalb physikalische Eigenschaften der Zellen nutzen - in diesem Fall insbesondere die Verformbarkeit. Das Team um Jochen Guck, Direktor am Max-Planck-Institut für die Physik des Lichts, hat vor einigen Jahren eine neue Technik entwickelt: Die Echtzeit-Verformungszytometrie (real-time deformability cytometry, kurz: RT-DC). Dabei wird eine Zelllösung durch einen transparenten Kanal von weniger als dem Durchmesser eines Haares gedrückt. Die Zellen werden dabei unbeschadet in die Länge gezogen und der Grad der Verformung lässt eine Zuordnung zu einem bestimmten Zelltyp zu. Die verformten Zellen im Kanal werden mit einer Highspeed-Kamera mit 2.000 bis 4.000 Bildern pro Sekunde aufgenommen. Die neue Methode von Jochen Guck und seinem Team setzt an diesem Punkt an: Sie nutzen ein neuronales Netzwerk, das mit den Bildern von fluoreszenzmarkierten Zellen trainiert wurde. Nach dem Training kann es die Zellen auch ohne Markierung in Echtzeit identifizieren und nach Wunsch sortieren.

Diese neue Methode hat viele Vorteile: So fällt nach dem Training des neuronalen Netzwerks die zeit- und kostenintensive Floureszenz-Markierung zur Identifizierung weg und die Zellen werden nicht mehr durch körperfremde Moleküle verändert. Dann reichen die von der Highspeed-Kamera geschossenen Bilder aus, um die Zellen zu identifizieren. Dieses Vorgehen ist sehr zellschonend, verändert die Zelleigenschaften nicht und kann bis zu 1.000 Zellen pro Sekunde analysieren. Die Anwendung von künstlicher Intelligenz auf RT-DC bietet außerdem die Erleichterung, dass die Parameter, anhand derer die Zellerkennung oder eine Zellveränderung durch beispielsweise Krankheiten festgemacht werden kann, nicht vorher definiert werden müssen. Man kann die KI selbst entscheiden lassen, anhand welcher Bildinformation Zellen am besten unterschieden werden können.

Guck nennt die neu entwickelte Methode, die nun in der Fachzeitschrift Nature Methods veröffentlicht wurde, einen "ultimativen Zellsortierer": Sie vereint die Genauigkeit der etablierten Erkennung über Fluoreszenz mit der Sensitivität der inhärenten mechanischen Zelleigenschaften und hat das Potential, als zukünftige Standardmethode Einzug in alle biologischen und biomedizinschen Labore zu halten. In Zukunft lassen sich damit beispielsweise schnell, unbeschadet und unverändert blutbildende Stammzellen aus einer Probe gewinnen, die dann einem Chemotherapie-Patienten zum Wiederaufbau des Immunsystems injiziert werden können oder besonders geeignete Photorezeptorzellen aus humanen Organoiden heraussortieren, um damit durch Transplantation manche Formen der Blindheit abzuwenden.

Mehr Informationen zum neuen Zellsortierer finden Sie in der Pressemitteilung oder in der Originalpublikation.

Zurück

Kontakt

Lothar Kuhn

Leitung Kommunikation und Marketing
Telefon: 09131 7133 825
MPLpresse@mpl.mpg.de

MPL Newsletter

Bleiben Sie auf dem Laufenden mit unserem Newsletter!
Der MPL Newsletter informiert Sie über aktuelle Forschungsergebnisse und spannende Neuigkeiten aus dem Institut.

Aktuelle Ausgabe: Newsletter No 15 - April 2020

Hier finden Sie vorherige Ausgaben des Newsletters.

 

Max-Planck-Zentren und -Schulen