Doron Cohen,
Jan von Delft,
Florian Marquardt,
Yoseph Imry
Physical Review B
80
(24)
245410
(2009)
| Journal
| PDF
We suggest a straightforward approach to the calculation of the dephasing rate in a fermionic system, which correctly keeps track of the crucial physics of Pauli blocking. Starting from Fermi's golden rule, the dephasing rate can be written as an integral over the frequency transferred between system and environment, weighted by their respective spectral densities. We show that treating the full many-fermion system instead of a single particle automatically enforces the Pauli principle. Furthermore, we explain the relation to diagrammatics. Finally, we show how to treat the more involved strong-coupling case when interactions appreciably modify the spectra. This is relevant for the situation in disordered metals, where screening is important.
Dimensional crossover of the dephasing time in disordered mesoscopic rings
M. Treiber,
O. M. Yevtushenko,
F. Marquardt,
J. von Delft,
I. V. Lerner
Physical Review B
80
(20)
201305
(2009)
| Journal
| PDF
We study dephasing by electron interactions in a small disordered quasi-one-dimensional (1D) ring weakly coupled to leads. We use an influence functional for quantum Nyquist noise to describe the crossover for the dephasing time tau(phi)(T) from diffusive or ergodic 1D (tau(-1)(phi)alpha T-2/3,T-1) to zero-dimensional (0D) behavior (tau(-1)(phi)alpha T-2) as T drops below the Thouless energy. The crossover to 0D, predicted earlier for two-dimensional and three-dimensional systems, has so far eluded experimental observation. The ring geometry holds promise of meeting this long-standing challenge, since the crossover manifests itself not only in the smooth part of the magnetoconductivity but also in the amplitude of Altshuler-Aronov-Spivak oscillations. This allows signatures of dephasing in the ring to be cleanly extracted by filtering out those of the leads.
Strong Coupling of a Mechanical Oscillator and a Single Atom
K. Hammerer,
M. Wallquist,
C. Genes,
M. Ludwig,
F. Marquardt,
P. Treutlein,
P. Zoller,
J. Ye,
H. J. Kimble
We propose and analyze a setup to achieve strong coupling between a single trapped atom and a mechanical oscillator. The interaction between the motion of the atom and the mechanical oscillator is mediated by a quantized light field in a laser driven high-finesse cavity. In particular, we show that high fidelity transfer of quantum states between the atom and the mechanical oscillator is in reach for existing or near future experimental parameters. Our setup provides the basic toolbox from atomic physics for coherent manipulation, preparation, and measurement of micromechanical and nanomechanical oscillators.
Measurement-based synthesis of multiqubit entangled states in superconducting cavity QED
Ferdinand Helmer,
Florian Marquardt
Physical Review A
79
(5)
052328
(2009)
| Journal
| PDF
Entangled multiqubit states may be generated through a dispersive collective quantum nondemolition measurement of superconducting qubits coupled to a microwave transmission line resonator. Using the quantum trajectory approach, we analyze the stochastic measurement traces that would be observed in experiments. We illustrate the synthesis of three-qubit W and Greenberger-Horne-Zeilinger states, and we analyze how the fidelity and the entanglement evolve in time during the measurement. We discuss the influence of decoherence and relaxation, as well as of imperfect control over experimental parameters. We show that the desired states can be generated on time scales much faster than the qubit decoherence rates.
Quantum nondemolition photon detection in circuit QED and the quantum Zeno effect
Ferdinand Helmer,
Matteo Mariantoni,
Enrique Solano,
Florian Marquardt
Physical Review A
79
(5)
052115
(2009)
| Journal
| PDF
We analyze the detection of itinerant photons using a quantum nondemolition measurement. An important example is the dispersive detection of microwave photons in circuit quantum electrodynamics, which can be realized via the nonlinear interaction between photons inside a superconducting transmission line resonator. We show that the back action due to the continuous measurement imposes a limit on the detector efficiency in such a scheme. We illustrate this using a setup where signal photons have to enter a cavity in order to be detected dispersively. In this approach, the measurement signal is the phase shift imparted to an intense beam passing through a second cavity mode. The restrictions on the fidelity are a consequence of the quantum Zeno effect, and we discuss both analytical results and quantum trajectory simulations of the measurement process.
Cavity grid for scalable quantum computation with superconducting circuits
F. Helmer,
M. Mariantoni,
A. G. Fowler,
J. von Delft,
E. Solano,
F. Marquardt
We propose an architecture for quantum computing based on superconducting circuits, where on-chip planar microwave resonators are arranged in a two-dimensional grid with a qubit at each intersection. This allows any two qubits on the grid to be coupled at a swapping overhead independent of their distance. We demonstrate that this approach encompasses the fundamental elements of a scalable fault-tolerant quantum-computing architecture. Copyright (C) EPLA, 2009
Universal Dephasing in a Chiral 1D Interacting Fermion System
We consider dephasing by interactions in a one-dimensional chiral fermion system (e.g., a quantum Hall edge state). For finite-range interactions, we calculate the spatial decay of the Green's function at fixed energy, which sets the contrast in a Mach-Zehnder interferometer. Using a physically transparent semiclassical ansatz, we find a power-law decay of the coherence at high energies and zero temperature (T=0), with a universal asymptotic exponent of 1, independent of the interaction strength. We obtain the dephasing rate at T > 0 and the fluctuation spectrum acting on an electron.
Contact
Theory Division Prof. Florian Marquardt
Max Planck Institute for the Science of Light Staudtstr. 2 91058 Erlangen, Germany