Thomas Metzger - Ultrafast Thin-Disk Amplifiers and Nonlinear Pulse Compression

Thomas Metzger, TRUMPF Scientific Lasers GmbH & Co. KG, Unterföhring, Germany

Library, A.2.500, Staudtstr. 2

Location details


Abstract:

Secondary sources have become critically important for both scientific and industrial applications. They can provide access to new wavelength range via high harmonic generation [1], laser plasma X-ray sources [2] or inverse Compton scattering [3], offering enhanced imaging capabilities in semiconductor lithography or medical tomography. Using laser acceleration [4], compact solutions for targeted medical therapy [5] are also foreseeable. For all those applications, high peak intensities are mandatory to obtain sufficient conversion efficiencies [6]. In addition, average power is typically desired to reach higher flux enabling rapid data acquisition, treatment, or process. Finally, these driving lasers must be stable and reliable to ensure consistent performance over long periods. Such industrial ultrafast systems are already available from TRUMPF Laser SE delivering 2mJ, 200W, 1ps (TruMicro 6000) to 10mJ, 1kW, 1ps (TruMicro 9000). For even higher pulse energies, the Dira Series from TRUMPF Scientific Lasers is now available with up to 300mJ at 1kHz with <1ps. In recent years, gas-filled multipass cells [7] became particularly attractive to broaden the spectrum for nonlinear pulse compressions. Combining high optical efficiency, high damage threshold and a robust setup, they emerged as an excellent solution for the compression of sub-ps pulses at high average powers. The generation of shorter pulses which will be highly beneficial for EUV and X-ray sources through a more controlled plasma formation and higher efficiencies. With the HERZ series, we aim at bridging the gap between narrow linewidth Yb-based light sources capable of delivering high average power and broadband Ti:Sapphire with poor power scalability. Recently, we obtained sub-30 fs pulse compression at 10mJ [8], while we demonstrated compressibility at 200mJ down to 50 fs [9]. In parallel, we anticipate the development of industrial systems delivering sub-40fs pulses at the kW-level with tens of mJ.

[1] M. van Mörbeck-Bock, T. Feng, A. Heilmann, L. Ehrentraut, H. Stiel, M. Hennecke, T. Sidiropoulos, C. von Korff Schmising, S. Eisebitt, and M. Schnürer "High average power OPCPA MIR-systems for coherent soft x-ray genera-tion accessing absorption edges of metals," in Proc. SPIE 11777, High Power Lasers and Applications, 117770C (2021).
[2] R. Keenan, J. Dunn, P. K. Patel, D. F. Price, R. F. Smith, and V. N. Shlyaptsev, “High -repetition-rate grazing-inci-dence pumped X-ray laser operating at 18.9 nm,” Phys. Rev. Lett. 94, 103901 (2005).
[3] W. S. Graves, J. Bessuille, P. Brown, S. Carbajo, V. Dolgashev, K.-H. Hong, E. Ihloff, B. Khaykovich, H. Lin, K. Mu-rari, E. A. Nanni, G. Resta, S. Tantawi, L. E. Zapata, F. X. Kärtner, and D. E. Moncton, “Compact x -ray source based on burst-mode inverse Compton scattering at 100 kHz,” Phys. Rev. Accel. Beams 17, 120701 (2014).
[4] A. J. Goers, G. A. Hine, L. Feder, B. Miao, F. Salehi, J. K. Wahlstrand, and H. M. Milchberg, H.M, “Multi-MeV Ele tron Acceleration by Subterawatt Laser Pulses,” Phys. Rev. Lett. 115 19, 194802 (2015).
[5] https://www.photonikforschung.de/projekte/lasertechnik/projekt/beetle.html
[6] H.-S. Park, N. Izumi, M. H. Key, J. A. King, J. A. Koch, O. L. Landen, P. K. Patel, D. F. Price, B. A. Remington, H. F. Robey, R. A. Snavely, M. Tabak, R. P. J. Town, J. E. Wickersham, C. Stoeckl, M. Storm, W. Theobald, D. M. Chambers, R. Eagelton, T. Goldsack, R. J. Clarke, R. Heathcote, E. Giraldez, A. Nikroo, D. A. Steinman, R. B. Ste-phens, and B. B. Zhang, “High-energy Ka radiography using high-intensity, short-pulse lasers,” Physics of Plasma 13, 056309 (2006).
[7] J. Schulte, T. Sartorius, J.Weitenberg, A. Vernaleken, and P. Russbueldt, “Nonlinear pulse compression in a multi-pass cell,” Opt. Lett. 41 (19), 4511 (2016).
[8] Y. Pfaff, C. Forster, G. Barbiero, M. Rampp, S. Klingebiel, J. Brons, C. Y. Teisset, H. Wang, R. Jung, J. Jaksic, A. H. Woldegeorgis, C. J. Saraceno, and T. Metzger, "Nonlinear pulse compression of a thin-disk amplifier and con-trast enhancement via nonlinear ellipse rotation," Opt. Express 30, 10981-10990 (2022).
[9] Y. Pfaff, G. Barbiero, M. Rampp, S. Klingebiel, J. Brons, C. Teisset, H. Wang, R. Jung, J. Jaksic, A. Woldegeorgis, M. Trunk, A. Maier, C. Saraceno, and T. Metzger, “Nonlinear pulse compression of a 200 mJ and 1 kW ultrafast thin-disk amplifier," Opt. Express 31, 22740-22756 (2023).

Contact

Edda Fischer

Head of Communication and Marketing
+49 9131 7133 805
MPLpresse@mpl.mpg.de

MPL Research Centers and Schools