
Lecture 7. Discrete-variable and continuous-variable approaches. 
Quantum measurement. Coincidence counting, HBT and HOM experiments, quasi-probabilities, 

homodyne detection. 
 

 
 
1. Quantum measurement. 
How to describe the measurement? How can we find the mean value of an observable, for 
instance, the photon number, and what will be the measurement accuracy?  
 
This measurement can be performed by a photon-counting detector, which provides the mean 

number of photons  NN ˆ . Depending on 

the state, the result will be different. Similarly, one 
can calculate the variance and the standard 
deviation. This calculation predicts the result of 
measuring a quantity. Fig.2 shows, for instance, the 
result of measuring the number of photons. It 
fluctuates from try to try, or with time.  
 
For instance, we have found at the last lecture that 
the mean number of photons in a coherent state is 

2N , and the variance is NN  22   

(shot noise). 
 
Projection postulate and projective (von Neumann) measurement. What if a system is in an 
eigenstate of a certain operator and we need to calculate the observable corresponding to 
another operator? For instance, again, the system is in state   and we need to calculate the 

probability to have a certain number of photons N .  
Because (the expansion of a unity) 1

N

NN , one can write 
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where 
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)|(  NNP   gives the probability to have N photons in a coherent state. This 

probability can be calculated (see the previous lecture) as 
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It is given by the Poissonian distribution. (Again, a Poissonian distribution has the variance 
equal to the mean, this is why we got the shot noise.)  

Generally, the probability )|( BAP  to measure an eigenvalue A  of an operator Â in an 

eigenstate B of an operator B̂  is 
2

BA .  

 
2. Discrete variables and continuous variables. 
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In quantum optics community, strange enough, there are two manners of research, which 
overlap not very much. The first one deals with the measurements and variables associated 
with photon numbers. The second one deals with quadratures, everything is calculated in 
terms of quadratures, and quadrature-related values are measured. These two approaches 
gradually merge, as there appear more and more groups working at the boundary. Still, I 
would like to focus on these two traditional approaches.  
 
3. Discrete-variable approach: operators and correlation functions 
In the discrete-variable approach, the main operator is the photon-number one,  

 .ˆ aaN             
Furthermore, its powers are of interest, and especially important are normally-ordered powers, 

 .)(:ˆ: kkk aaN            
The values to measure are the mean values of these operators, i.e., Glauber’s correlation 
functions (CFs) of different orders,  
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including the CFs with different time and space arguments, 
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and including normalized CFs: 
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There are two very important properties of these CFs:  
 
(1) Normalized CFs are not sensitive to losses.  
 
Let us first prove this statement. The losses, as is usual in 
quantum optics, we will describe as a beamsplitter (BS) with the 
amplitude transmission and reflection coefficients 

.1,,
22  rtrt  One of the inputs contains only vacuum; in 

the Heisenberg approach we will describe what happens using 
the operator transformation, which has the form  
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where we denoted the operator in the ‚vacuum’ mode as v  
(Fig.1). 
  Then the output photon-number operator has the form  
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As we proved in Lecture 6,  
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After the BS,   

 ).1'ˆ)....(1'ˆ('ˆ:'ˆ:  kNNNN k  

Now, let us average this expression over the state 
va

0 . Due to the averaging over 
v

0 all 

terms in (5) except the first one vanish because they contain vacuum-state operators. Then,  
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And of course a similar equality is valid for the mean photon number:  
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Then, for the normalized kth-order CF, we have  
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and we see that losses do not change the normalized CF.  
 
(2) Normalized CFs are sensitive to the number of modes.  
 
As an example consider the second-order CF for light containing K independent modes with 
the same statistics (normalized CF g ) and the same mean photon number 0N . Then, the total 

photon-number operator is 
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the mean photon number is 0KN , and the normalized second-order CF is  
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The same result will be obtained for an effective number K of modes.  
 
4. Correlation functions for different states 
Coherent state. Obviously, for a coherent state  ,  
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For a Fock state N ,  
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In particular, 
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Let us now consider a thermal state, with the mean photon number n , 
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The mean photon number will be obtained by averaging a Fock-state mean photon number 
with the classical probability, 
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Similarly,  
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Then,  

.2)
1

1
1)(1(2)1)(1(2

)1(

)1()1(

)1(

2
23

422
)2( 










n
nn

n

n
g 




 

We got the same result as in the classical approach. 
 



5. Discrete-variable approach: measurement. 
 
Photon counting is the main experimental technique in discrete-variable quantum optics. We 
already mentioned it in Lecture 3; the main characteristic of a single-photon detector is its QE 

 ,  and the mean number of counts m  is given by .N̂  Here, I will always consider a 

single-mode detector, i.e., such that the detection volume is equal to the coherence volume. 
The non-unity quantum efficiency affects photodetection the same way as losses; in fact, the 
way it is described in theory is by assuming that an ideal ( 1 ) detector is preceded by a BS 

with   1, rt . Then, the factorial moments of photocounts number will have a 

simple relation to the factorial moments of the photon number: 
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In particular,  
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hence the normalized CF can be measured as  
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So the bunching parameter can be calculated from the measured variance and mean of the 
photocount number.  
As we remember, the classical requirement is 1)2( g . 

Anti-bunching, thus, is a nonclassical feature.  
 
Coincidence counting.  However, in experiment it is 
much simpler to use another method of CF 
measurement – namely, the Hanbury Brown-Twiss 
technique (Lecture 3). Let us recall the figure (Fig.2), 
where this time we consider the ‘vacuum’ input. The 
probability that detector 1 fires at time 1t  and detector 

2 fires at time 2t  is given by the average of the 
operator   
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As we learned at Lecture 5, negative-frequency field operators can be written in terms of 
photon creation operators. Strictly speaking, frequency integration is involved here, but for 
simplicity we will assume the time moments equal and also simply replace the field operators 
with the photon creation and annihilation operators. Then, the coincidence counting rate will 
be proportional to 

 cc TaaaaR 2121~  ,  

where cT  is the coincidence window (the larger this window, the more probable is a 

coincidence), while the mean count rates in both detectors will scale as 111 ~ aaR   and 

222 ~ aaR  . Then,   
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(it can be proven that the proportionality coefficients are such that the equality holds true.)  
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On the other hand, the combination on the right-hand side of (6), with an account for the BS 
transformation (4), can be written as  
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While averaging, we have to take into account that we average over a state 
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We see that the second-order normalized CF can be obtained from the measurement of 
coincidence counting rate and photon counting rates in two detectors. Consider now some 
interesting effects measured this way. 
 
Anti-bunching.  We saw that classical statistical optics ‘forbids’ the values of 1)2( g . 
However, this is always the case for a single-photon state, even in superposition with the 

vacuum: for ,10 10 cc   0)( 22  aa , hence 0)2( g . This is also true for a mixture, 

1100 10 pp  . And we also saw that Fock states all manifest anti-bunching. 

 
High g(2). You will learn from Lecture 10 that through parametric down-conversion, one can 
generate two-photon light in the state 20 c  (here, of course, 1c  - otherwise 

normalization would be needed). Then, ,,)(
2222 caacaa    hence 1
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This is called superbunching, or two-photon correlations.  
 
Hong-Ou-Mandel effect. It is interesting to see what 
happens when two single-photon states arrive 
simultaneously at the beamsplitter. We will use again 
the combination  
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only this time we will assume that there is no vacuum 
at the second input (Fig.3) but the input state is  
 ,0011

baba
ba   

then the output state can be obtained by transforming 
the operators according to (4). Indeed, let us first write 
the inverse transformation,  
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It is clear that no coincidence counts will be observed for detectors 1 and 2. Photon pairs will 
go as a whole to channel 1 or to channel 2. 
 
6. Continuous-variable approach: quadratures, quasi-probabilities. 

 
In continuous-variable approach, in the focus are the quadrature operators,  
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The quantum state is described by their mean values and variances, but a more complete 
picture could be made by considering their joint probability distribution  
 ?)ˆ,ˆ( 21 xxP  
We know that these operators do not commute; therefore such a joint distribution, strictly 
speaking, cannot be introduced. But there are many ways to introduce quasi-probabilities. As 
always in the probability theory, a probability density can be defined as the Fourier-transform 
of a certain characteristic function. In quantum optics, the characteristic function will be the 
mean value of some operator. The three quasi-probabilities we will consider will correspond 
simply to different ordering of aa ,  in this operator. 
 
Glauber-Sudarshan function. A very convenient instrument in quantum optics is considering 
coherent states "' izzz   as a basis. The Glauber-Sudarshan function is introduced as the 

density operator in the coherent-state representation: 

 .)("'ˆ zzzPdzdz  

It is very convenient that in the P-representation the density matrix is diagonal. This 
representation has many nice properties – for instance, it provides a simple way for averaging 
normally-ordered operators. Indeed, consider an operator like mn aaA )(ˆ  , then  
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It means that the mean of a normally-ordered operator can be calculated in the P-
representation just by putting *z  everywhere for a  and z  for a . In this representation, it is 
convenient to consider the characteristic function  
 .}exp{}exp{:}exp{:)",'( **)( awwaawwawwC n    

Using (7), we obtain this mean value: 
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This is actually 2D Fourier transformation, and the inverse is   
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This P-function cannot be really considered a probability. For a coherent state  , it is a 

delta-function:  
 )()",'( )2(   zzzP . 
And for a Fock state, it is even more singular. For this reason, it cannot be measured directly. 
 
Wigner function. It is obtained as the Fourier-transform of a symmetric characteristic 
function: 
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This is the Wigner function, usually written in terms of quadratures: ).,( 21 xxW  It has a 
remarkable property: its marginal distribution gives the correct probability density for a 
quadrature:  

 )(),( 1212 xpxxWdx  . 

For this reason, it can be measured; we will soon see how. The Wigner function can be never 
singular but it can be negative, which is considered as a sign of nonclassical light (impossible 
for a classical probability density). 
 
Husimi function. This is the Fourier transform of the anti-normally ordered characteristic 
function, 
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Husimi function is used more seldom. It is never 
singular or negative.  
 
7. Continuous-variable approach: measurement.  

 
Homodyne detection. The main technique for 
measuring quadratures is homodyne detection. Again 
we have a setup with the beamsplitter and two 
detectors, but this time no coincidence circuit (we will not multiply but subtract the signals 
from the detectors). This time the detectors are not counting ones, but analog ones, having 
high quantum efficiency and producing photocurrents: an electron is released for nearly every 
photon. The state under study is fed into port a , and into the other port strong coherent 
radiation is fed (the local oscillator, LO).  Then, according to transformation (4),   
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Assume that the photocurrent in each detector reflects just the flux of photons (each photon 

creates an electron). Also, let the BS be 50%, so 2/1 rt . Then, photocurrent in detector 
1 is  
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and in detector 2,  
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The difference of these two photocurrents will be 
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Assume now that the LO is so strong that its state can be considered classical. Then, the 
operator is replaced by a complex number ,00
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Or, expressing the exponential through sines and cosines, 
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The expression in brackets represents the ‚generalized quadrature’, 
 ].sinˆcosˆ[)(ˆ 21  xxx        (8) 

1a  

0a  

2aa  

Fig.4 

LO



Depending on the phase of the LO, it can be the first or the second quadrature.  
  
Variance measurement.  Homodyne detection is often used to observe squeezing. Then, the 
main observable is the variance of the quadrature, 2x , which is compared to the coherent-
light variance. If squeezing has to be measured, 
it is very important that the detection has little 
losses.  
 
Quantum tomography. Eq. (5) shows that 
depending on the LO phase, any quadrature can 
be measured. It turns out that by doing it for a 
series of phases,  one can reconstruct the 
Wigner function by means of the Radon 
transformation. 
 
 
Home task:  
Using the transformation of operators on a beamsplitter, prove that a coherent state after a 
beamsplitter will remain a coherent state. 
 
Books: 

1. Klyshko, Physical foundations of quantum electronics, Sec. 7. 
2. Mandel, Wolf, Optical coherence and quantum optics, Secs. 14.7, 21.6.. 
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