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Scientific Abstract
The future of research in theoretical physics may increasingly rely on artificial
intelligence. An AI model that contributes to the derivation of new mathemat-
ical theories in physics could benefit from a robust mathematical foundation,
which could be provided by theorem provers. This thesis explores the use of the
Lean Theorem Prover for a graph theoretical statement with a direct connection
to quantum optics. Specifically, it attempts to formalize a theorem regarding
the maximum number of disjoint perfect matchings in a graph where all match-
ings are disjoint. This theorem is directly related to the constructability of
certain quantum optics experiments. Part of this formalization was achieved,
along with the addition of basic but necessary graph theory statements to Lean’s
mathematical library Mathlib. This work opens the possibility of a new appli-
cation of AI in quantum optics, by formalizing the mathematics that describe
experimental quantum optics in a formal system that breaks down proofs into
the axioms of mathematics.

Popular Scientific Abstract (Dutch)
De afgelopen jaren hebben kunstmatige intelligentie (KI) modellen die getraind
zijn op grote hoeveelheden data hun kracht getoond. Large language models
(LLM) zoals ChatGPT hebben het uitvoeren van veel taken voorgoed veran-
derd. Ook in de wetenschap hebben ze een grote impact gehad, vooral bij het
schrijven en analyseren van teksten. In de exacte wetenschappen zijn LLM’s
echter nog niet baanbrekend geweest. Zelfs bij eenvoudige rekensommen maakt
ChatGPT regelmatig fouten. Om KI te ontwikkelen die wel impact heeft in ex-
acte wetenschappen, kan het nuttig zijn om deze te baseren op een wiskundige
en exacte taal. Een voorbeeld hiervan is een type programmeertaal genaamd
theorem provers.

In theorem provers is het mogelijk om wiskundige stellingen te bewijzen,
waarbij het programma alleen slaagt als de computer alle stappen goedkeurt.
Een model gebaseerd op een dergelijk fundament zal altijd wiskundig kloppende
suggesties doen, wat in theoretische natuurkunde zeer nuttig kan zijn.

Het doel van dit onderzoek is om een wiskundige stelling, die direct ver-
bonden is met een natuurkundige stelling uit de kwantumoptica, te bewijzen
in een theorem prover genaamd Lean. In het veld van kwantumoptica worden
licht en de kwantumeffecten die daarbij optreden bestudeerd. Voor sommige
experimenten is het noodzakelijk om fotonen in een bepaalde kwantumverstren-
gelde toestand te brengen. Specifiek richt dit onderzoek zich op het creëren
van GHZ toestanden, een sterk verstrengelde toestand. Het realiseren van deze
toestanden is in de praktijk erg lastig. De methode die in dit onderzoek wordt
gebruikt, is bijzonder nuttig omdat er een link is gelegd met een andere tak
van de wiskunde, namelijk de grafentheorie. Een relevante stelling is hierin be-
wezen, wat het een uitstekende kandidaat maakt om te proberen te bewijzen
in Lean. Het digitaliseren van deze stelling kan er in de toekomst voor zorgen
dat een KI-systeem dat getraind is op Lean verdere ontdekkingen kan doen, die
dan ook directe gevolgen hebben voor het maken van GHZ toestanden in de
kwantumoptica.
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1 Introduction
Over the past decade, AI models trained on large datasets have demonstrated
significant potential for various applications. Unfortunately, they have not yet
been able to make a field altering contribution in theoretical physics, despite
their potential to do so. For example, large language models (LLMs) have be-
come great at replicating the way humans write text. At times, this can create
the illusion that these models are capable of complex and logical reasoning. It
becomes clear that it is but an illusion when it is tasked with, for instance, solv-
ing a mathematical problem with difficulty of anywhere from slightly advanced
arithmetic to university level mathematics. Fundamentally, LLMs are also not
expected to, as the basis upon which they are trained is human language, which
is not a language of logic. An example of a digitized language that is based on
logic could take the form of a theorem prover (TP), a software tool that allows
the formalization of theorems, starting from an axiomatic system. In the future,
a TP could be the basis for an AI model that is able to aid in doing research in
a field of exact sciences.

A formalized proof in a theorem prover is verified by a computer down to the
axioms, providing the most unambiguous proof method available. Because of
this, various difficult or controversial theorems, such as the four-color theorem
[1] were proved in them, to show their correctness. Theorem provers have also
been used in physics, such as in the formalization of the theory of relativity
[2]. Recently, the Lean theorem prover has demonstrated its technical ability
with the formalization of cutting-edge mathematics, like in the Liquid Tensor
Experiment [3] and with the large scale effort to create a mathematical library
called Mathlib [4]. Additionally, several projects are focused on formalizing
aspects of physics in Lean, including high energy physics [5].

This thesis aims to formalize a graph theoretical statement that is directly
related to experimental setups in quantum optics capable of creating highly
entangled Greenberger–Horne–Zeilinger (GHZ) states. More specifically, it at-
tempts to formalize Bogdanov’s lemma in Lean, which is a statement about
the maximum number of disjoint perfect matchings in a specific type of graph.
The formalization of Bogdanov’s lemma would prove the possibility to digitize
this statement. In the future, this could serve as a corpus for training AI [6],
potentially aiding related problems and directly impacting the constructability
of certain quantum optics experiments.

2 Background

2.1 Quantum entanglement through graphs
2.1.1 Quantum entanglement of photons

Quantum entanglement is one of the most striking features of quantum mechan-
ics. In its simplest form, quantum entanglement takes the shape of a two-particle
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Bell-state:
|Φ+⟩ = 1√

2
(|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B)

If two particles are in this state, the measurement of particle A means that the
state of particle B is automatically known as well. Particle A and particle B
are then considered entangled. This unique feature of quantum states can be
used in various fields, such as quantum computing, cryptography and quantum
metrology [7].

The above Bell state can be generalized to an arbitrarily large n-particle
d-dimensional entangled state:

|Ψ⟩ =
d−1∑
i=0

ci |i⟩⊗n

where ci is a complex coefficient such that
∑

|ci|2 = 1. Any n-particle en-
tangled state can be subdivided into a class, where any two states of the same
class are identical under stochastic local operations and classical communication
(SLOCC). For n = 2, there exist two classes, for n = 3, there exist 6 classes,
for n ≥ 4, there exist an infinite number of classes [8]. For n = 3, two par-
ticularly interesting states can be identified, the GHZ = 1√

d

∑d−1
i=0 |i⟩⊗n and W

= c1 |10 . . . 0⟩ + c2 |01 . . . 0⟩ + · · · + cn |00 . . . 1⟩ states. These states are known
as genuinely entangled, meaning that their entanglement cannot be reduced to
entanglement among pairs of qubits. In their two-dimensional form, these states
can be used in quantum metrology and to test local-realism theories [9]. Their
multi-dimensional equivalents have been shown to be useful in quantum infor-
mation [10]. Because of this, experimentally creating GHZ and W states is of
great interest.

The particles comprising an entangled state can take various forms. Ex-
perimentally, entangled states can be created using superconducting circuits,
trapped ions, neutral atoms and photons. Currently, the record for the largest
number of qubits in the GHZ state using trapped ions is 32 [11], for supercon-
ducting circuits 60 [12] and for photons 14 [13]. Besides the amount of qubits,
there are other considerations for these methods of creating entangled states.
Photons, for example, are excellent candidates for long-range entanglement dis-
tribution, something that is necessary for quantum networks [14].

An often used way of generating the photons required for entanglement is
through spontaneous parametric down-conversion (SPDC), a process to generate
photon pairs with correlated polarization [7]. This process works with a non-
linear crystal that takes in a single (pump) photon and emits two photons. To
create an entangled state, two such crystals are needed, of which the created
photon pairs have different polarization. One of the photons of each pair is
then sent through a polarizing beam splitter, which removes the information
from which crystal the photon originates. This process creates a four-particle
GHZ state |ψ⟩ = (1/

√
2)(|H,H,H,H⟩+ |V, V, V, V ⟩), where H and V stand for

horizontal and vertical polarization, respectively [15].
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Figure 1: Four SPDC crystals that each can probabilistically generate a photon
pair when triggered. Crystals 1 and 2 and crystals 3 and 4 create horizontally
and vertically polarized photon pairs respectively. The photon pair from crystal
1 ends up in photon output path A and C, making them indistinguishable from
the photons created in crystals 3 and 4, besides polarization.

2.1.2 Quantum entanglement of photons by path identity

A new approach to generate multi-photon entangled states removes the need for
polarizing beam splitters and entangled photon pairs to begin with [16]. The
main idea relies on the probabilistic activation of two out of four SPDC crystals,
with the generated photons being sent to four detectors Fig. 1. This causes an
overlap of at most two photon paths. All the possibilities are captured in the
full wave function, up to second-order SPDC [17].

|ψ⟩ = (1− 2g2) |0, 0, 0, 0⟩+
g |H, 0, H, 0⟩+ g |0, H, 0, H⟩+ g |0, 0, V, V ⟩+ g |V, V, 0, 0⟩+
g2 |2H, 0, 2H, 0⟩+ g2 |0, 2H, 0, 2H⟩+ g2 |0, 0, 2V, 2V ⟩+ g2 |2V, 2V, 0, 0⟩+
√
2g2 |H,H,H,H⟩+ g2 |H, 0, H + V, V ⟩+ g2 |H + V, V,H, 0⟩+

√
2g2 |0, H, V,H + V ⟩+

√
2g2 |V,H + V, 0, H⟩+

√
2g2 |V, V, V, V ⟩+O(g3)

(1)
An interesting case is where photons of exclusively the same polarization are

created. This happens only when crystals 1 and 2 or 3 and 4 create photon pairs.
Post-selection (conditioning the final result on one detection event in each of the
detectors) of such cases results in the four-photon GHZ wavefunction, indicated
in red in the wave equation (1).

This method can be expanded to create multi-photon, multi-dimensional
entangled states. First, n SPDC crystals can create a 2n-photon entangled state
by daisy-chaining the crystals together, as in Fig. 2. Theoretically, n can be
arbitrarily large, but the probability of 2n-fold coincidences occurring decreases
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Figure 2: Left: Proposal for creating a general 2n-photon 2-dimensional GHZ
state. Right: Graphical diagram for creating a 4-photon 3-dimensional GHZ
state. The crystals each produce photon pairs in the lowest OAM mode. The
gold-brown boxes represent holograms that increase the mode of the photon
passing through it by one.

with gn, where g is the down-conversion amplitude of the crystal. To create
a multi-dimensional state, a continuous degree of freedom is necessary. Some
candidates are orbital angular momentum (OAM), discrete frequency, or time
bins [16]. An example of such a multi-dimensional state using OAM is presented
in Fig. 2 (right). After post-selection for cases where there is a photon in each
detector, the wavefunction becomes

|ψ⟩ = 1√
3
(|0, 0, 0, 0⟩+ |1, 1, 1, 1⟩+ |2, 2, 2, 2⟩)

Combining the methods to increase photon count and dimensionality, a setup
that creates n-photon d-dimensional entangled states can be constructed, where
n ≥ 2 and d ≥ 2.

An example of a multi-photon, multi-dimensional entangled state is shown
in Fig. 3. After post-selection (for six-fold coincidences in this case), the wave-
function becomes:

|ψ⟩ = 1

2
(|0, 0, 0, 0, 0, 0⟩+ |1, 1, 1, 1, 1, 1⟩+ |2, 2, 2, 2, 2, 2⟩+ |1, 2, 1, 2, 0, 0⟩)

This is not a 6-photon 3-dimensional GHZ state, as one might expect. Sur-
prisingly, there is a restriction to the dimensionality of GHZ states that this
method can construct. This restriction will be explained in section 2.1.3.

The method described previously does not yet make use of the powerful
quantum phenomenon of interference. Interference in photons can be achieved
by shifting their respective phases. This can be achieved experimentally by
placing phase shifters on a photon path. As an example, take the setup in Fig.
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Figure 3: Graphical diagram for creating 6-photon 3-dimensional entangled
states.

1, where instead crystals 3 and 4 also produce horizontally polarized photon
pairs. If a phase shifter is placed on, for example, photon output path A and
before crystal 4, the following state is produced after post-selection [17]

|ψ⟩ = (1 + eiϕ) |H,H,H,H⟩

where ϕ is the phase shift. Clearly, for ϕ = π, destructive interference is demon-
strated.

Finally, this method of creating multidi-mensional GHZ states has been ex-
perimentally demonstrated in a nanophotonic circuit [18], and destructive in-
terference using this method has also been shown [19].

2.1.3 GHZ states in optical setups as graphs

Besides the experimental advantages that the described method of producing
entangled states provides, another big advantage to other methods is its in-
terpretability through graph theory. By describing these experimental meth-
ods with graphs, powerful theorems from graph theory can be applied, solving
complicated problems. One might, for example, wonder what the highest di-
mensionality GHZ state is that this method can create, given a set amount of
detectors. The basic idea for translating experimental setups to graphs is to
translate every output path (photon detector) to vertices and every photon pair
as edges that connect the output paths the photons end up in [20]. GHZ states
are created when there is exactly one photon in every output path. For the
graph, this translates to that every vertex should be incident to exactly one
edge. In graph theory, this is known as a perfect matching.

Definition 2.1 (Perfect matching (PM)). A perfect matching is a subset of
edges of a graph such that every vertex is incident to exactly one edge.

Now consider again the experimental setup in Fig. 3. After post-selection,
an (undesirable) non-GHZ quantum state is obtained. The corresponding graph
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Figure 4: Graph corresponding to Fig. 3. Every vertex is an output path of a
photon. An edge is drawn between vertices if the photons from the same photon
pair end up in the corresponding photon output paths.

in Fig. 4 suggests another restriction, namely that the graph should exclusively
have disjoint perfect matchings.

Definition 2.2 (Disjoint perfect matchings). Two perfect matchings are disjoint
if their edge sets are disjoint.

Definition 2.3 (Exclusively disjoint perfect matching graph). An exclusively
disjoint perfect matching graph is a graph of which all its perfect matchings are
disjoint.

The question asked in the beginning of this section can now be answered in
terms of perfect matchings.

Theorem 2.1 (Bogdanov’s lemma). Given an exclusively disjoint perfect match-
ing graph G(V,E) with |V | = 2n. The maximum amount of perfect matchings
G can have is

cmax (2n) =

{
3, n = 2

2, n > 2
(2)

8



The original proof is given by Ilya Bogdanov [21], the following is a more
formal version.

Definition 2.4 (Hamiltonian cycle). A Hamiltonian cycle is a sequence of dis-
tinct edges which joins a sequence of vertices, such that the first and last vertices
are the same and all vertices are visited exactly once.

Lemma 2.2. The union of any distinct PMs M1 and M2 of an exclusively
disjoint perfect matching graph G forms a Hamiltonian cycle.

Proof. Let G′ be the graph with edge set M1 ∪M2. Every vertex in u ∈ G′ is
incident with an edge uv ∈M1 and uw ∈M2. This means that G′ is two-regular,
which is equivalent to the statement that it is a disjoint union of cycles.

Any of the cycles in G′ have even lengths of at least four. Because the cycles
are disjoint, each of these cycles take the form of C2n with n ≥ 2. For m cycles
in G′ there exist 2m PMs, obtained by combining the matchings of the cycles.
Combinations from different cycles give non-disjoint perfect matchings. Due to
the exclusive perfect matching restriction, this means that m = 1. G′ contains
a single cycle and thus must form a Hamiltonian cycle.

An exclusively disjoint perfect matching graph with two PMs constructed
with as few edges as possible takes the shape of C2n. Removing any single edge
from such a graph also removes one of its PMs. The only way an exclusively
disjoint perfect matching graph has three PMs is if it is at least 3-regular (i.e.
every vertex has at least three neighbours). Therefore, the only way to increase
the amount of PMs is to add edges.

Lemma 2.3. Let G be an exclusively disjoint perfect matching graph of the
form C2n with n > 2. Let G′ be another exclusively disjoint perfect matching
graph constructed by adding any number of edges to G. G′ can have maximally
two PMs.

Proof. G has an even number of vertices. This means an edge can be added
that splits the cycle into two even-length or two odd-length cycles.

Suppose an edge is added that splits the graph into two even cycles. Then
start constructing a new PM, starting with the new edge. The two vertices that
are connected by this edge do not need to be matched anymore. That leaves
2n− 2 = 2(n− 1) vertices that need to be matched, where 2(n− 1) is split up
into two paths of even length. Both of these have a PM. Therefore, a third PM
can be constructed, like illustrated in Fig. 5. This new PM contains edges that
original two PMs also contain, so the new PM is not disjoint.

Conversely, a single edge that splits the graph into two odd cycles can never
contribute to a PM, as the two cycles, with the newly matched pair of vertices
removed, form two odd length paths, which do not have a PM individually.
Therefore, more edges that split the graph into odd length cycles can be added.
Suppose another odd length cycle subtending edge is added that neighbours and
crosses the first edge (see Fig. 6). This splits up the original cycle graph into
three parts. Because two of the vertices that are connected to the new edges are
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Figure 5: A new non-disjoint PM is constructed when an edge is added that
splits a graph of the form C2n up into two even cycles.

Figure 6: An edge that splits up a graph of the form C2n into two odd cycles
does not create a new PM. Adding a second such edge splits the graph into
three parts, at which point a new, non-disjoint, PM is constructed.

neighbours (and the edges cross each other), the individual cycles they formed
are shortened by one. Therefore, two of the three parts are even length paths,
which each contains a PM. The only vertices that are left to be accounted for
are the vertices that form the third path created by the two edges. Consider the
two odd length cycles that do not contain these vertices. The length of this last
path is 2n− (ñ1 + ñ2), which is even or zero, so this path also contains a PM.
Altogether, this newly formed PM is not disjoint with the original two PMs.

Finally, every cycle graph where every vertex is connected to a new such
odd cycle subtending edge contains at least one of these vertex neighbour pairs
that have crossing edges. This happens because the minimal odd cycle length
is three, leaving an unmatched vertex that needs to be matched. As its two
neighbors are already matched, it needs to look for another vertex to match,
which requires their connecting edge to cross the first edge.

For experimental setups, the result in theorem 2.1 means that the dimen-
sionality of a GHZ state can at most be two, except for the case where there are
only four output paths (K4), as that graph is too small for the arguments used
in the proof above. However, so far, the effect of interference has not been taken
into account. Interference could, in theory, cancel terms that are not desired,
thus aiding in creating higher-dimensional GHZ states. To describe that case
graph-theoretically as well, it is necessary to introduce weights and colorings
to the graphs. To motivate this, note that non-disjoint PMs could be allowed
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under some conditions in this formulation, as they could end up destructively
interfering with each other, removing the unwanted term from the wave func-
tion. Specifically, this means that PMs that create the same state should have
a combined factor of 0. To quantify, the following definitions are needed.

Definition 2.5 (Edge coloring). Every edge in a graph is assigned a color. The
colors are assigned according to the mode of the state described by the edge when
it arrives at the detector.

Definition 2.6 (Inherited vertex coloring). In PMs, every vertex is incident to
exactly one edge. The inherited vertex coloring (ivc) of a graph is a coloring of
the vertices that is decided by the color of the edge that is incident to it.

Definition 2.7 (Ivc weight). The weight of an ivc is defined by the following
formula:

w(ivc) =
∑

PM∈M(ivc)

∏
e∈PM

w(e)

At this point, every edge has a color and a (complex) weight and every PM
has an ivc, which also has a weight. These definitions can be combined to form
a restriction for a graph to form GHZ states.

Definition 2.8 (Monochromatic graph). A graph is called monochromatic if ∀
multi-colored ivc, w(ivc) = 0 [17].

As opposed to counting how many disjoint PMs an exclusively disjoint PM
with n vertices can have, the goal is now to find how many ivc’s a monochromatic
graph with n vertices can have. The latter problem reduces to the former
when only positive real weights are used for all edges (i.e. there are no phase
shifters in the setup). This correspondence creates a lower bound of two for
the amount of ivc’s in a monochromatic graph with n > 4 vertices. Although
not solved analytically, all numerical evidence points to the conjecture that this
lower bound is also equal to the upper bound [22]. A proof of this statement
would mean that it is impossible to create such states using linear quantum
optics [17].

2.2 Theorem prover
A theorem prover (TP) is a type of software that allows a user to verify mathe-
matical statements. Any formal proof in such a system follows from an axiomatic
system, in addition to a set of assumptions. The advantage over proving theo-
rems in natural language is that the proof is unambiguous and can be checked by
a computer [23]. As such, there have been numerous formalizations of difficult
or controversial proofs, such as the four-color theorem, Kepler’s theorem and
the odd order theorem [1][24][25]. Furthermore, modern, cutting-edge mathe-
matics has been formalized, for example in the liquid tensor experiment project
[3], where the main theorem about liquid vector spaces from Fields medalist
Peter Scholze, which is notoriously difficult to understand, has been verified.
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Figure 7: Number of lines in the Mathlib library [30]. The blue line represents
the number of lines in Mathlib3, which has been deprecated since the switchover
from Lean3 to Lean4. The number of lines added in Mathlib has seen a steady
and steep linear increase since late 2020, with approximately 30000 lines being
added every month.

Besides demonstrating the technical capabilities to handle complicated defini-
tions, the extreme rigor that is necessary exposed some small mistakes in the
original proof.

One way of monitoring a TP’s technical ability and popularity is by tracking
what amount of 100 impactful theorems have been proven in it, concretely,
the list constructed by Freek Wiedijk [26]. Currently, all 100 theorems except
Fermat’s last theorem (FLT) have been formalized in a TP. The TPs with the
highest scores are Isabelle, with the most formalized theorems at 90, followed
by Coq at 79 and Lean at 76. The first attempt at formalizing FLT is underway,
to be done in Lean, in a project that is aimed to be completed in five years [27].

Formalizing theorems in a proof assistant often times takes many more steps
than the natural language equivalent due to the extreme rigor that is required.
Therefore, it is desirable to have a program that can prove a theorem in as little
lines as possible. The de Bruijn factor is a way to quantize the ratio of the
number of lines needed to prove a theorem in a theorem prover compared to
natural language [28]. Even with smart tactics in modern automated theorem
provers (ATP), the de Bruijn factor in practice is estimated to be ∼20 [29].

The modularity that comes with digitizing mathematical statements allows
the construction of mathematical libraries containing different branches of math-
ematics. Isabelle, for example, has the Archive of Formal Proofs (AFP), Math-
Comp for Coq, and Lean has Mathlib. AFP contains 270000 theorems in 4.4
million lines of code (LoC) (see Fig. 7), compared to Mathlib’s 150000 theorems
in 1.6 million LoC [31][30]. The main advantage of having such libraries is that
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they can simply be imported in any project, allowing the use of all the math-
ematics that has been formalized in them. Another motivation for creating a
large digitized mathematical library is that it provides a corpus to train AI on
[32]. The state of the art for such AI models roughly solves as many problems
as a silver medalist in the international mathematical olympiad [33].

Theoretical physics, being written in the language of mathematics, is also a
natural candidate for formal verification using theorem provers. Indeed, several
physical theories have been formalized in various theorem provers [2][34][35][5].
Doing this yields similar benefits to formalizing mathematics: the resulting proof
is more objectively verifiable and the extreme rigor exposes hidden assumptions.
In the future, a library for physics could be constructed, much like the mathe-
matical libraries AFP and Mathlib, where the theory of quantum physics and
general relativity could be imported with two lines of code. The motivation for
creating such a library parallels that of Mathlib [5]: it could serve as a dataset
to train AI, enabling new results; theorems within it are unambiguously checked
and assumptions clearly exposed, and it provides a centralized repository for all
proofs. Additionally, because Lean is also a functional programming language,
scientific computing can be performed with existing definitions, reducing bugs
by ensuring clarity in computations [36].

2.3 Lean
For this project, the Lean4 theorem prover was used, along with its main math-
ematical library, Mathlib. Lean is a functional programming language based on
the calculus of inductive constructions that can be used as an interactive the-
orem prover [37]. Much of the functionality in Lean can be summarized using
functions and theorems. The following is an example of a function:

def add (n m : N) : N := n + m

The parentheses after the function name define the input parameters of the
function along with their types. The object after the semicolon is the output
type of the function. Everything after the := symbol is what the function
executes. In the example, the function takes in two natural numbers and returns
a natural number that is the sum of the two input numbers. A theorem that
uses this definition:

theorem add_zero (n m : N) (hm : m = 0) : add n m = n :=
by -- ⊢ add n m = n
simp [add] -- ⊢ n + m = n
rw [hm] -- ⊢ n + 0 = n
simp [add_zero] -- No goals

Like for a function, the parameters in parentheses can be seen as input variables
for a theorem. The statement after the semi-colon is what is to be proven. hm
represents a hypothesis about m. Everything after the := symbol are steps
to proving the statement. The comments represent the proof state after every
step. In Lean, a statement can be proven in term or tactic mode. Terms are
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single expressions using lambda calculus which allows the user to ’talk’ directly
to the Lean kernel. Tactics are more intuitive commands that manipulate the
proof state. Term mode is activated by default; tactic mode can be entered
using the by keyword. In the example above, the goal is to prove that the
function call add n m returns the same value as n, when m is assumed to be
zero. The goal is proven in tactic mode using the simp tactic, which simplifies
the goal using a list of rules or lemmas. The proof states clearly show what
each step does: simp [add] uses the function add to rewrite add n m to n + m.
Then, the tactic rw is used to rewrite the proof state using the assumption hm.
simp [add_zero] then applies the lemma add_zero to rewrite n + 0 to n, at
which point the theorem has been proven.

In Mathlib, a graph is defined by the following:
structure SimpleGraph (V : Type u) where

Adj : V → V → Prop
symm : Symmetric Adj := by aesop_graph
loopless : Irreflexive Adj := by aesop_graph

All that this means is that a SimpleGraph is a symmetric and irreflexive adja-
cency relation on a vertex type V. To elaborate, for any two vertices v and w of
type V, their adjacency relation is a Prop (proposition), so True or False. This
adjacency relation is restricted to be symmetric (i.e. adjacency between v and
w implies adjacency between w and v) and loopless (i.e. v is not adjacent to v).
These last two restrictions are proven using the aesop_graph tactic (Automated
Extensible Search for Obvious Proofs for graphs).

A subgraph of a graph is a matching if it satisfies the following definition:
def IsMatching {V : Type u} {G : SimpleGraph V} (M : Subgraph G) : Prop

:= ∀ {v}, v ∈ M.verts → ∃! w, M.Adj v w

The different brackets that can be seen here are merely a technical difference
from the normal brackets - they achieve the same thing. Apart from that, the
proof reads like the following natural language: for all vertices v, such that v
is in the set of vertices of subgraph M , then there exists a unique vertex w,
such that v and w are adjacent in M . This captures the meaning of a matching
because every vertex v is adjacent to exactly one other vertex. The definition
of a perfect matching then follows naturally:
def IsPerfectMatching {V : Type u} {G : SimpleGraph V} (M : Subgraph G)

: Prop := M.IsMatching ∧ M.IsSpanning

This means that a subgraph M is a perfect matching if it is a matching and
it spans the entire graph G. Note that because the function IsMatching is
defined on a subgraph, it can be equivalently called with M.IsMatching or
IsMatching M - the same goes for IsSpanning.

3 Results
The proof of Bogdanov’s lemma requires the notion of a Hamiltonian cycle,
which does not exist yet in Mathlib. To get there, first a definition of a Hamil-
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tonian path is needed:

def IsHamiltonian (p : G.Walk a b) : Prop := ∀ a, p.support.count a = 1

Clearly, this definition suggests that a walk p from vertex a to vertex b is Hamil-
tonian if every vertex in p is visited exactly once. It is then possible to proof
that the support of p is the entire vertex set:

lemma IsHamiltonian.support_toFinset (hp : p.IsHamiltonian) :
p.support.toFinset = Finset.univ :=
by -- ⊢ p.support.toFinset = univ
simp [eq_univ_iff_forall] -- ⊢ ∀ (x : α), x ∈ p.support
simp [hp] -- No goals

In the first step the lemma eq_univ_iff_forall: s = univ ↔ ∀ (x : α), x ∈
s is used to transform the proof to ∀ (x : α), x ∈ p.support, which can be

closed by using the definition of a Hamiltonian path which is assumed in hp.
This definition of a Hamiltonian walk can be used to extend a cycle:

structure IsHamiltonianCycle (p : G.Walk a a) extends p.IsCycle : Prop :=
isHamiltonian_tail : (p.tail toIsCycle.not_nil).IsHamiltonian

This definition suggests that a cycle p is a Hamiltonian cycle if its tail is a
Hamiltonian walk, where the tail is p without the first half edge. Of course, a
graph G that is a Hamiltonian cycle should be connected, i.e., every vertex a, b
∈ G should be able to reach each other with some walk:

lemma IsHamiltonian.connected (hG : G.IsHamiltonian) : G.Connected where
preconnected a b := by

-- (p: G.Walk v w )
obtain rfl | hab := eq_or_ne a b -- (a b : α), (hab : a ̸= b)
· rfl
have : Nontrivial α := ⟨a, b, hab⟩
obtain ⟨_, p, hp⟩ := hG Fintype.one_lt_card.ne’
have : Nontrivial α := ⟨a, b, hab⟩
obtain ⟨_, p, hp⟩ := hG Fintype.one_lt_card.ne’
-- (p : G.Walk w w ), (hp : p.IsHamiltonianCycle)
have a_mem : a ∈ p.support := hp.mem_support a
have b_mem : a ∈ p.support := hp.mem_support b
have walk_a : G.Walk w a := p.takeUntil a a_mem
have walk_b : G.Walk w b := p.takeUntil b b_mem
have walk_a_b : G.Walk a b := (id walk_a.reverse).append walk_b
exact Walk.reachable walk_a_b

nonempty := not_isEmpty_iff.1 fun _ 7→ by simpa using hG $ by simp
[@Fintype.card_eq_zero]

The connectedness proof has two cases: a = b and a ̸= b. The graph constructed
by the first case is always connected and can be closed by the rfl tactic. For
the other case, it is first necessary to retrieve the variables p and hp, like shown
in the comments. Next, because p is a Hamiltonian cycle and thus contains all
vertices, a and b are shown to be in p. From this, a walk in p can be constructed
between a vertex w and a and between vertex w and b. Finally, these two walks
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Figure 8: Merged pull request of Hamiltonian paths and cycles in Mathlib.

share the same vertex w , so they can be appended into a single walk G.Walk a
b, which closes the proof. Furthermore, the definition of Connected requires G
to be non-empty, which is obvious, but technically tricky to prove. The above
definitions and lemmas about Hamiltonian walks and cycles are now part of
Mathlib, see Fig. 8 [38].

Now that Hamiltonian cycles are in Mathlib, Bogdanov’s lemma can be
proven. This part of the project was completed with Pjotr Buys, who utilized
the author’s setup of definitions, problem statement, and initial lemmas, and
ended up contributing the majority of the proofs towards Bogdanov’s lemma
[39]. An exclusively disjoint PM graph can be defined in Lean as the following:

def HasExclusivelyDisjointPM (G : SimpleGraph V) : Prop :=
∀ (M1 M2 : Subgraph G), (M1.IsPerfectMatching ∧
M2.IsPerfectMatching ∧ M1 ̸= M2) → M1.edgeSet ∩ M2.edgeSet = ∅

This definition assumes that for all pairs of distinct perfect matchings, the
intersection of their edgesets is empty. With this definition, it can be proven
that the union of the two perfect matchings from an exclusively disjoint perfect
matchings graph forms a Hamiltonian cycle:

theorem TwoMatchingsHamiltonian [Fintype V] [DecidableEq V] (G :
SimpleGraph V) (M1 M2 : Subgraph G)
(hprop : HasExclusivelyDisjointPM G) (hM1 : IsPerfectMatching M1)
(hM2 : IsPerfectMatching M2) (hdif : M1 ̸= M2) :
IsHamiltonianCycle (M1 ⊔ M2) := by
-- ⊢ IsCycleSubgraph G (M1 ⊔ M2) ∧ (M1 ⊔ M2).IsSpanning
refine ⟨?isCycle,?isSpanning⟩
. rw [←SubConnectedImpCycleIffTwoReg]

-- ⊢ SubgraphIsRegular G (M1 ⊔ M2) 2 ∧ (M1 ⊔ M2).Connected
have degM1 := DegreePerfectMatching hM1 -- M1 is 1-regular
have degM2 := DegreePerfectMatching hM2 -- M2 is 1-regular
have sameVerts := SpSubEqSupp hM1.2 hM2.2
have disjEdges := hprop M1 M2 ⟨hM1, hM2, hdif⟩
. exact DegreeSubgraphAdd M1 M2 degM1 degM2 sameVerts disjEdges
. exact DisjointPMGraphImpCon G hprop M1 M2 hM1 hM2 hdif

. exact SpUnionLeft hM1.2
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Figure 9: Constructing of a new perfect matching in a disjoint union of cycles
using the symmetric difference operator △. The symmetric difference operator
working on sets gives the set of elements which are in either of the sets, but not
in their intersection.

The proof above begins by dividing the main goal into two subgoals: proving
that the union of the two perfect matchings forms a cycle and that it spans the
entire graph.

To address the first subgoal, the lemma SubConnectedImpCycleIffTwoReg :
SubgraphIsRegular G H 2 ↔ IsCycleSubgraph G H is used. This lemma states
that a subgraph is a cycle if and only if it is 2-regular and connected. To use
the cycle statement in this lemma, it needs to be shown that M1 ⊔ M2 is 2-regular
and connected. Generally, the union of two edge-disjoint subgraphs with the
same vertex set and degrees d1 and d2 will be (d1 + d2)-regular. Since both
M1 and M2 fulfill these assumptions and are 1-regular, their union is 2-regular,
established using DegreeSubgraphAdd : SubgraphIsRegular G (H1 ⊔ H2) (d1 +
d2). The lemma DisjointPMGraphImpCon : (M1 ⊔ M2).Connected is then applied
to demonstrate that the union of the two disjoint perfect matchings is connected,
confirming that a cycle is formed.

The second subgoal is resolved using the lemma SpUnionLeft (hSpan :
H1.isSpanning) : (H1 ⊔ H2).IsSpanning, which states that the union of two
subgraphs spans the entire graph if at least one of the subgraphs spans it.

Both the proof in Lean and the proof in lemma 2.2 use the notion of 2-
regularity to show the existence of some type of cycle structure. Whereas the
natural language proof uses a high-level argument in four lines that there must
be only one cycle, the Lean proof of connectedness spans ∼200 LoC in total. The
method used in the Lean proof is elegant: if M1⊔M2 is not connected, a new,
non-disjoint PM can be constructed using the symmetric difference operator, as
illustrated in Fig. 9. Since this violates the exclusive PM property, M1 ⊔M2
must be connected.

4 Discussion
In this thesis, part of the proof of Bogdanov’s lemma has been formalized in
the Lean4 theorem prover. This verifies that this part of the proof holds when
it is checked down to the axioms of mathematics. Furthermore, it acts as a
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proof of concept for formalizing and digitizing statements pertinent to physics.
A complete proof of Bogdanov’s lemma could in the future be used to train an
AI model on, which could help to make discoveries about this graph-theoretical
statement, which then has direct consequences to the constructability of entan-
gled states in quantum optics.

By adding definitions and lemmas about Hamiltonian paths and cycles to
Mathlib, other projects can now also use or further develop this branch of graph
theory. Additionally, this code contributes to a bigger corpus for AI to train on.

4.1 Personal experiences with writing Lean
Formalizing the entirety of Bogdanov’s lemma was not achieved, mainly because
proofs in Lean require a different structure than those in natural language.
Mathematical proofs in natural language often lack the rigor necessary for direct
formalization, partly due to implicit assumptions. For instance, proving that
a Hamiltonian cycle is connected could be summarised in one or two sentences
in natural language, but in Lean it requires ∼10 LoC, which corresponds to a
de Bruijn factor of 5-10. One way of making formalization easier is to reduce
this factor by, for example, introducing more advanced tactics. Additionally,
training a better AI model could potentially make computer-based theorem
proving even easier than the traditional way on a blackboard.

While setting up the environment and stating assumptions and theorems
becomes familiar quickly, the proofs—particularly in Mathlib—can often ap-
pear cryptic. This is partly because the code is prioritized for conciseness over
readability. To overcome this, it’s helpful to go through proofs line by line to
understand how the proof state changes, which helps in getting to know the
function of various tactics.

Several resources are available to support learning to program in Lean. The
extensive online learning materials and the active, supportive community on
Zulipchat are invaluable. Especially the natural numbers game is a great re-
source to get to know theorem proving in Lean. Moreover, Lean includes smart
tactics that attempt to prove statements by searching through the Mathlib li-
brary, such as apply?, exact? or aesop. Finally, AI assistants like Moogle,
Loogle and Leandojo further support Lean development.

5 Conclusion
In quantum optics, the generation of GHZ states is of high interest. A new
method makes use of overlapping paths, which removes the information about
the photon’s origin, facilitating the construction of GHZ states. This type of
experimental setup can be directly translated into graph theory, where a perfect
matching corresponds to an ideal photon creation case that contributes to the
desired state. Additionally, the graph representing the experimental setup is
constrained to contain exclusively disjoint perfect matchings. Using this new
formulation of the optical setup, one can state the question of the highest di-
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mensional GHZ state that can be created for any number of particles, using
the same optical instruments. This thesis formalizes part of the proof of that
statement in the Lean theorem prover. This result serves as a proof of concept
that this graph theoretical statement, and consequently the quantum optical
statement, can be formalized in a theorem prover.

In future research, lemma 2.3 should also be formalized in order to fully
digitize Bogdanov’s lemma. Furthermore, the generalized conjecture about ivc
weights can be stated and a lower bound can be proven. This could then be
used alongside advanced theorem-proving techniques, such as clever tactics or
AI models, to provide insights into this unresolved case.
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