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Abstract

The rapid growth in the number of publications in Optics over the years calls for the
development of a robust methodology to store the necessary data and utilize it in the best
possible way. Semantic graphs can store huge amounts of data and the hidden relationships
in it in the most efficient and easy-to-access format, thus making information management
easier. The field of graph-based data analysis and tools powered by Natural Language
Processing software in the back end have emerged intensely in recent times. This thesis
aims at utilizing such methodologies to pick topics in the field of Optics that highlight
past and ongoing research. The aim here is to interlink the research fields in Optics in an
efficient manner to unleash some new, surprising, and interesting research directions in
this field that might not be visible otherwise. To tackle this idea, a semantic network is
developed based on 35,717 papers published on arXiv under the category, physics.optics
by analyzing historic patterns in the titles and abstracts of these papers. The extracted
patterns are then fed to an artificial neural network to predict the chances of a pair of
research topics being investigated together in the future, which was not tackled together
in the past. After building and testing this model, it is deployed to predict personalized
research topic combinations based on the interest of one specific chosen Scientist. As a test
case, this idea has been implemented for one Scientist at the Max Planck Institute for the
Science of Light, Erlangen.
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Chapter 1

Introduction

1.1 Accelerated growth in scientific publications

Over the years, the number of publications in the field of Science has grown at a rapid rate.
arXiv, which is a free distribution service and an open-access archive for scholarly articles
in the fields of physics, mathematics, computer science, quantitative biology, quantitative
finance, statistics, electrical engineering and systems science, and economics 1, in 2018,
received 140,616 new submissions, a 14% increase from 2017 [1]. In 2019, the repository
received 155,866 new submissions, an 11% increase from 2018 [2]. Based on the numbers
published in the arXiv annual report for the year 2021 [3], there were 181,630 new submissions
in total in 2021. The number of submissions per month was 15,500 [3].

After analyzing the research data published in the field of Optics on arXiv, a visualization
as shown in figure 1.1 was obtained. The blue-colored plot indicates the fast growth in the
number of published articles. There are many factors affecting the growth of publications.
For example, new research fields coming up and the number of researchers has increased
over the years, leading to a vast addition to the scientific literature. In figure 1.1, the
orange-colored plot shows the growth trend in the number of authors.

With the current number of scientific publications, it can be safely assumed that this
number is going to escalate more rapidly in the future with new emerging fields and new
bright minds joining the research community. Therefore, a new methodology is needed to
go through the scientific literature to pave the way for new research directions. This can
lead to discoveries that might seem out of our imagination at the first glance.

1Source: https://arxiv.org/
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Growth in the number of scientists and publications in the field of Optics during
the past century

A computer algorithm with access to a large corpus of published scientific research
could potentially make genuinely new contributions to science [5]. This level of automation
of science is more in the realm of science fiction than reality at present [5]. Algorithms
capable of extracting semantic knowledge from the scientific literature can be employed
to show researchers a guiding path. As an example, the evaluation of whether an idea is
novel or surprising depends crucially on already-existing knowledge. Thus, a computer
algorithm with the capability to propose new useful ideas or potential avenues of research
will necessarily require access to published scientific literature—which forms at least partially
the body of human knowledge in a scientific field [5]. Knowledge can be structured and
represented using semantic networks that represent semantic relations between concepts in
a network. Over the last few years, significant results have been obtained by automatically
analyzing the large corpus of scientific literature, including the development of semantic
networks in several scientific disciplines [5] [6] [7].

1.2 The idea of recommender systems

The way Google puts search results according to our query in front of us and then later
provides us with all the relevant suggestions before we even finish typing the query is the
best example of what magic structured stored information can create. When we open
Instagram, the application suggests us to add people that are within our circle because of
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Figure 1.2: The user interface of the GPT 3 tool. Here, an abstract from a scientific text
[4] is entered in order to get the keywords out of it. The words highlighted in green are the
extracted words. It can be seen that some of the important words like symmetry breaking,
dielectric optical resonator, evanescent coupling are not even extracted. This indicates that
we might lose some important information discussed in the piece of text.
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some mutual friends. When we open online shopping platforms like Amazon, the backend
algorithm suggests products that might be interesting to us. Personal assistants like Siri,
Alexa, or Cortana rely on Artificial Intelligence to transcribe our commands into text.
The thing to think about here is the aspects of science that can be augmented by this
kind of Artificial Intelligence algorithms. Modern tools can identify and personalize the
papers that should be read. One of these which is widely used is Google Scholar 2 which
enables searching of papers, viewing of paper statistics as well as citations and references,
setting up alerts for new papers by following an author or a paper, and keeping a basic
library with automatic recommendations. Another one is Semantic Scholar 3 which analyzes
papers semantically with external material aggregation and suggests recommended papers.
These new capabilities will help researchers expand the depth and quality of knowledge as
well as help identify new research possibilities. For decision-makers in science, Artificial
Intelligence could offer a more comprehensive horizon scanning capability, suggesting areas
for strategic investment, and identifying ideas [8]. Publishers may also use such tools to
identify which referees to seek for a manuscript or to automatically identify apparent flaws
and inconsistencies in a manuscript, avoiding the need to bother human reviewers [8].

1.3 Generative models based on text data

There have been many new advances made in the field of applications of Artificial Intelligence
in Science. Worth mentioning is GPT-3 where GPT stands for Generative Pre-trained
Transformer. It is a machine learning model trained using internet data to generate any
type of text. Developed by OpenAI, it requires a small amount of input text to generate
large volumes of relevant and sophisticated machine-generated text. The GPT-3 model
has over 175 billion machine learning parameters [9]. This model is trained to generate
realistic human text based on the information from the internet [9]. GPT-3 has been used
to create articles, poetry, stories, news reports, and dialogue using just a small amount
of input text. It is also being used for automated conversational tasks, responding to any
text that a person types into the computer with a new piece of text appropriate to the
context. It can create anything with a text structure, and not just human language text. It
can also automatically generate text summaries and even programming code [9]. In this
work, extraction of important words from a piece of text is an important factor. After
coming across such large language models like GPT3, the first thought that comes to the

2Source: https://scholar.google.com/intl/us/scholar/help.htmlcover
3Source: https://www.semanticscholar.org/
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mind is using such tools to quickly extract the keywords. However, GPT-3 has no internal
representation of what each of the words used by it mean 4. It has no semantically-grounded
model of the world or of the topics on which it discourses 4. This implies that GPT-3
works with only statistical computations and does not work by understanding the input
and output text’s content. Thus, GPT-3 struggles in reasoning capabilities [5]. Figure
1.2 illustrates that we also lose some information if we process our text based on such
models. Therefore, even though this large language model has high power and potential, it
cannot be used to draw conclusions from a piece of scientific text by automatic information
extraction and so it is not useful here as we are also interested in the context in which a
particular piece of text has been mentioned.

1.4 Motivation and goal of the thesis

With the advances made in the field of Artificial Intelligence, the question that arises now
is can such AI-powered systems come up with creative and better research ideas faster? It
makes sense to use such tools to suggest new hypotheses and even new areas to explore.
Some of the proven successful artificially intelligent tools have two critical ingredients. The
very first and the heart of such a tool is a good and large amount of data and the second
one is a clear method to analyze it for patterns [8]. The scientific community can benefit a
lot from the potential the modern tools have to offer.

The vast and growing number of publications in the discipline of Optics cannot be
comprehended by a single human researcher. It is a tedious process to go through all the
papers that have been published and get a guiding path to have an overview of interesting
research directions. Having all the published information in a structured format will not only
make it easily accessible but also help scientists to discover interesting fields to investigate
even if these fields don’t fall under the current set of their research interests. Using network
theoretical tools, we can suggest personalized, out-of-the-box ideas by identifying pairs of
concepts, which have unique semantic network properties [5]. The strength of the recently
developed machine learning algorithms can be used to mine hidden surprising facts from
time-dependent data as well.

The goal is to develop a dynamic semantic graph. This semantic graph will consist of a
number of vertices and the connections between every pair of vertices will be based on a
common factor between the two. This semantic graph is then used to build a system that

4Source: https://www.univ.ai/post/the-limitations-of-gpt-3-and-its-impact-on-society
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suggests relevant research topics that can be combined to provide interesting directions
for future research in Optics. The next aim is to use this system to provide personalized
research suggestions for Scientists to drive their research in Optics towards innovation and
amazing breakthroughs. This target is achieved by building an efficient neural network to
discover the patterns in the generated semantic graph and get the most probable topics
that would be interesting to study together after a defined time interval.



Chapter 2

Background

2.1 Related work

Looking at structured and linked information collected from different sources can be highly
informative rather than coming across the different pieces of information separately. Using
connected research data can be highly beneficial to scientists. After analyzing the abstracts
of millions of biomedical papers published during the period 1983 to 2008, scientists identified
the names of biomolecules that were studied together in one paper [7]. This information
was then stored in the form of connections between vertices where each vertex represented
the name of a biomolecule and the connection between them was their co-appearance in the
same paper [7]. This organized data turned out to be a powerful tool to infer the strategy
scientists have to explore a novel chemical relationship. For example, figure 2.2 shows
that scientists tend to explore the neighborhood of prominent chemicals. The crowded
space in the graph indicates that multiple researchers focus on their investigations on a
very congested neighborhood of the discoverable space rather than exploring the space of
the unknown and unique pairs more broadly [7]. This work highlights the importance of
co-appearance of topics in the same research article. Co-appearance indicates that the two
connected entities were used to achieve a common goal in a particular research study. In
this work, we also try to structure the information based on the idea of co-appearance of
research fields in the title or abstract of the same research article.

In another study, future research trends in the field of Quantum Physics were predicted
with semantic and neural networks [5]. Here, a method to build a semantic network from
published scientific literature was demonstrated. The semantic network is used to predict
future trends in research relevant to Quantum Physics. In the semantic network, scientific

7
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Figure 2.1: Diagrammatic inner working of SEMNET. Human-generated concept lists
(from Wikipedia and books) are combined with automatically generated lists (with natural
language processing, using RAKE on 100,000 arXiv articles) to generate a list of quantum
physics concepts. Each concept forms a link in a semantic network. The edges are formed
when two concepts coappear in a title or abstract of any of the 750,000 papers (from arXiv
and APS). A mini-version of SEMNET is shown, using parts of three articles from APS.
Edges carry temporal information of their formation year, which leads to an evolution of
the semantic network SEMNET over time [5]. (Image from [5]).

knowledge is represented as an evolving network using the content of scientific papers
published since 1919 [5]. The nodes of the network correspond to physical concepts, and
links between two nodes are drawn when two physical concepts are concurrently studied in
research articles. To form connections between different quantum physics concepts, 100,000
articles of quantum physics categories on arXiv and the dataset of all 650,000 articles
ever published by the American Physical Society (APS) were extracted [5]. Thus, in total,
750,000 research articles were processed for this work [5]. These two data sources were
chosen because the APS database contains peer-reviewed physics papers from the last 100
years (allowing for investigation of long-term trends), while the arXiv database contains
specific quantum physics papers, allowing for more precise coverage of the quantum physics
research trends. In this work, the list of keywords is generated using two independent
methods. One set is a human-made list of physical concepts. These concepts are compiled
from the indices of 13 quantum physics books which were available in a digital form. Other
than this, titles of Wikipedia articles that are linked in a quantum physics category were
used. This human-made collection contains around 5,000 entries of physical concepts.
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Then, the human-generated list is extended with an automatically generated list of physical
concepts obtained by processing the titles and abstracts of around 100,000 articles published
in quantum physics categories on the arXiv [5]. The human- and machine-generated lists of
concepts were combined and optimized to delete incorrectly identified concepts. Ultimately,
this yielded a list of 6,300 terms [5]. Influential and prize-winning research topics from the
past were identified inside the semantic Nnetwork which confirmed that the Network stored
useful semantic knowledge [5]. A deep neural network was trained here using states of the
past network, to predict future developments in quantum physics research, and confirm high
quality predictions using historic data. The 17 properties for each unconnected concept
pair in the semantic network are used by the neural network to estimate which pairs of
quantum physics concepts are likely to be connected within 5 years and which are not [5].
The idea of extracting keywords and storing these in a structured form inside a semantic
network is a crucial component of this work.

In another piece of work, Artificial Intelligence was used to predict the future research
directions of Artificial Intelligence itself [6]. More than 100,000 research papers were used
to build up a knowledge network with more than 64,000 concept nodes [6]. Ten diverse
methods to tackle this task, ranging from pure statistical to pure learning methods were
presented in this paper [6]. It was observed that the most powerful methods use a carefully
curated set of network features [6]. Extracting the features based on the connection patterns
in the semantic network is something that has been implemented in this work as well.

2.2 Network theory

2.2.1 Semantic networks

Network is a graph that represents symmetric or asymmetric relations between discrete
objects. A semantic network is a graphic notation for representing knowledge in patterns of
interconnected nodes [10]. The structural idea is that knowledge can be stored in the form of
graphs, with nodes representing some real-world objects, and edges representing relationships
between those objects. The edge labels have information about the relationships to provide
the basic needed structure for organizing the knowledge. Some real-world examples of
semantic networks have been depicted in figure 2.3.
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Figure 2.2: The semantic network in Biochemistry. The nodes represent the names of
biomolecules. An edge is drawn to connect two biomolecules if these two have been studied
together in one published article (Image from [7]).

2.2.2 Mathematics of networks

The adjacency matrix

There are several ways of representing a network mathematically. Networks are graphs
made up of nodes and edges. Representing a graph as a matrix model makes it easy for us
to analyze it to get insights into the patterns hidden in the connections within the graph.
One of the ways to encode graph information is ’The Adjacency Matrix’. This matrix
gives information about the connections in the graph. The elements of the matrix indicate
whether pairs of vertices are adjacent or not in the graph [13]. If the vertices are adjacent to
each other, the adjacency matrix denotes whether the adjacent vertices are connected or not
[13]. This can be understood better with the help of an example. Consider an undirected
network with 6 vertices as shown in figure 2.4. The adjacency matrix A [13] of a simple
graph is the matrix with elements Aij such that:

• Aij = 1 if an edge exists between vertices i and j

• Aij = 0 if the vertices have no edge between them
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(a) The protein interaction network of T.Pallidum.
The nodes represent proteins and the edges are
drawn if the 2 proteins interact with each other
(Image from [11]).

(b) Empirical and simulated
mobility network for France,
Germany, and UK. The net-
work depicts the flows be-
tween cities as observed in
the period from 2000 to 2006.
The thickness of the edges is
proportional to the log of the
number of moves between the
two cities (Image from [12]).

Figure 2.3: Examples of semantic networks
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Figure 2.4: A simple graph of 6 nodes and 7 edges. The vertices are labeled as 1, 2, 3,
4, 5, and 6. Each label is unique so that the labels can be used to refer to any vertex
unambiguously. If there is an edge between vertices i and j, this connection can be denoted
as (i,j). In this way, the complete network can be specified by giving the number of edges
and a list of all the edges. So, the graph in figure 2.3 has edges, (1,2), (1,5), (2,3), (2,4),
(3,4), (3,5), and (3,6).

Two points to notice about the adjacency matrix are that, the diagonal matrix elements
are all zero, and second that it is symmetric, since if there is an edge between i and j then
there is an edge between j and i. Let us consider this with an example element A12 and A21.
The value of both these elements is 1 because nodes 1 and 2 are connected in the graph in
figure 2.4. The explanation is similar to the other matrix elements.

A (Adjacency Matrix of Graph in figure 2.4)=



0 1 0 0 1 0
1 0 1 1 0 0
0 1 0 1 1 1
0 1 1 0 0 0
1 0 1 0 0 0
0 0 1 0 0 0



Cosine similarity

After defining a graph, it is important to find out the structural similarities hidden in it.
One of the measures to do the same is counting the number of common neighbors the 2
vertices have. This is when we define the term, ’cosine similarity’. This value falls in the
range of 0 and 1 [13]. A cosine similarity of 1 indicates that two vertices have exactly the
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same neighbors [13]. A cosine similarity of zero indicates that they have none of the same
neighbors [13] and also indicates that the vertices are far apart semantically.

Now, let us understand how we use this powerful concept in network analysis. In the
previous section, we had an overview of the adjacency matrix. On the previous page, there
is also a demonstration of how an adjacency matrix A is formed for a simple graph shown in
figure 2.4. The element of the matrix is 1 if there is a connection between the two vertices
and 0 otherwise. If we have a look at the elements with value 1 from a different perspective,
it can be seen that you need to cover one edge to go from one node to another.

Now, if we consider the nodes that need two edges to reach from one to the other. This
means that these two nodes have one node that you need to cross to reach the other. An
example of such a scenario can be given with the help of the graph in figure 2.5. Consider
node 1 and node 3. If you start at node 1 and you have to reach node 3, you have to either
go past node 5 or node 2. In both cases, you need to cover two edges in total, that is, in
total, two paths. You can either first go from node 1 to 2 and then node 2 to 3. The other
option is going from 1 to 5 and then to 3. In the first case, the two paths are 1-2 and 2-3.
In the second one, these are 1-5 and 5-3. Other pairs of nodes that have paths of length 2
between them are [(1, 4), (2, 3), (2, 4), (2, 5), (2, 6),(3, 4), (4, 5), (4, 6), (5, 6)]. The next
step is to capture this information in the form of a matrix for speedy computation. Now,
let us square the adjacency matrix. After squaring, the resulting matrix is given below. Let
us call this matrix B.

B =



2 0 2 1 0 0
0 3 1 1 2 1
2 1 4 1 0 0
1 1 1 2 1 1
0 2 0 1 2 1
0 1 0 1 1 1


If we have a closer look at the square of the adjacency matrix, we can draw the following
conclusions:

• Every diagonal element denotes the total number of nodes connected to the node
under consideration. If we consider, A33, the value is 4. Now in figure 2.5, node 3 is
connected to nodes 2, 4, 5, and 6, which is 4 nodes in total. The logic is same for A11,
A22, A44, A55 and A66.

• Now, let us have an overview of the logic behind the values of the other matrix
elements. If we have a look at the element A52, the value is 2. This value comes
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Figure 2.5: Number of paths of length 2. Here, nodes 2 and 5 are considered as an example.
These nodes have 2 paths of length 2, which means there are two possibilities where we
need to cross 2 edges to reach from one node to the other.

from the number of possible paths of length 2 to reach node 5 to node 2. This logic
is illustrated in figure 2.5. The other matrix elements are calculated with the same
approach and this is how we get this matrix.

• Thus, raising the adjacency matrix with a certain degree, that is, [An]ij, means finding
the total number of paths of length n which connect node i and node j. Matrix
computations are time and cost-consuming so it is better to stop at n=2 as it is also
efficient.

We now have all the building blocks to calculate the cosine similarity. Cosine similarity
between node i and node j is expressed as given below [13].

Cosinesimilarity(i, j) = Bij√
Bii × Bjj

So, suppose, if we want to find cosine similarity between node 1 and node 3, the approach
would be as follows.

CosineSimilarity(1, 3) = 2√
2 × 4

= 0.707

The computation shown above can be performed on all pairs of nodes present in the
graph to check how similar they are to proceed with further analysis.
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Figure 2.6: A simple graph (2)

Consider another graph shown in figure 2.6. Now, we have to compute the cosine
similarity between node 5 and node 7 of this graph. As discussed in the section before, we
need the degree of node 5, node 7, and the number of paths of length 2 to reach node 7
from node 5. Now, let us have a closer look again at the graph in figure 2.6. Node 5 is
connected to 3 other nodes (node 1, node 3, and node 6) and so the degree of node 5 is 3.
Node 7 is connected to 3 other nodes (node 4, node 6, and node 8) and so the degree of
node 7 is 3. Now, in figure 2.6, the path highlighted in green color is the only one that has
length 2 and the one that connects node 5 and node 7 with node 6 in between. So, the
cosine similarity can be computed as given below now. The value of the cosine similarity is
very less in this case which means that there is nothing much in common between node 5
and node 7.

Cosinesimilarity(5, 7) = 1√
3 × 3

= 0.333

2.3 Artificial neural networks

2.3.1 What is an artificial neural network?

An artificial neural network is an interconnected assembly of simple processing elements,
units or nodes, whose functionality is loosely based on the animal neuron [14]. Similar
to the human brain which has neurons interconnected to one another, artificial neural
networks also have neurons that are interconnected to one another in various layers of the
networks in a chain [15]. These neurons are known as nodes. The dendrites from biological
neural networks represent inputs in artificial neural networks, the cell nucleus represents
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Figure 2.7: A general artificial neural network architecture

the nodes, the synapse represents the weights and the axon represents the output [14].
An artificial neural network in the field of Artificial Intelligence attempts to mimic the
network of neurons that make up a human brain so that computers will have the option to
understand things and make decisions in a human-like manner.

2.3.2 Feedforward neural networks

A feedforward neural network allows signals to travel in one direction only, from the input
to the output. There are no feedback loops such that the output of some layer influences
that same layer. Feedforward networks tend to be simple networks that associate inputs
with outputs 1. A general structure of a feedforward neural network is shown in figure 2.7.

• Input layer: This layer consists of the neurons that receive inputs and pass them on
to the other layers. The number of neurons in the input layer should be equal to the
number of features extracted from the dataset.

• Hidden layer: In between the input and output layers, there are hidden layers.
Hidden layers contain a vast number of neurons that apply transformations to the
inputs before passing them.

• Output layer: The output layer is the predicted feature.

• Neuron weights: Weights refer to the strength or amplitude of a connection between
two neurons. As the network is trained, the weights are updated.

1Source: https://www.tutorialspoint.com/what-is-feed-forward-neural-networks
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Figure 2.8: Computational model of a feedforward neural network

2.3.3 Training a feedforward neural network

Now, let us have a closer look at the different layers discussed in section 2.3.2 and how they
come into the picture during training (refer to figure 2.8 for an illustration of the discussion
in this section). This will be easier with the help of an example. Suppose, we want to work
on a weather forecasting problem 2 to predict the chances of rain based on the following
input data:

• Time (Day or Night)

• Temperature

• Month

Let us first store the data of these three parameters into three different variables - x1 (Time
(Day or Night)), x2 (Temperature) and x3 (Month). Then, let us assume the threshold value
to be 20. This means that if the output value is higher than 20 then it will be raining,
otherwise, it’s a sunny day. Consider an input data tuple (x1, x2, x3) as (1, 10, 6), initial
weights of the feedforward network (w1, w2, w3) as (4, 1, 2) and bias as 1. Following are
the steps that will be followed to compute the output.

• Multiplication of weights and inputs: The input is multiplied by the assigned
weight values. In this case, it would be as follows:

x1 × w1 = 1 × 4 = 4

x2 × w2 = 10 × 1 = 10
2Source: https://builtin.com/data-science/feedforward-neural-network-intro
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x3 × w3 = 6 × 2 = 12

• Adding the biases: Every layer has a bias to determine whether or not the activation
output from a neuron is going to be propagated forward through the network. With
an activation output of zero, the neuron would not activate or in other words, would
not fire. Thus, no information from these non-activated neurons will be passed
forward to the rest of the network. Essentially, zero is the threshold here for the
weighted sum in determining whether a neuron is firing or not. This is where bias
comes into the picture to help us adjust the threshold. The bias gets added to the
weighted sum before being passed to the activation function. Thus, the model now
has increased flexibility in fitting the data since it now has a broader range of what
values it considers as being activated or not. In this step, the product computed by
multiplying weights and inputs is added to the bias. The modified inputs are then
summed up to a single value.

weighted sum (y) = (x1 × w1) + (x2 × w2) + (x3 × w3) + b = 4 + 10 + 12 + 1 = 27

• Activation: An activation function is used to map the summed weighted input to
the output of the neuron. It is called an activation function because it governs the
inception at which the neuron is activated and the strength of the output signal.
There are several activation functions for different use cases. The most commonly used
activation functions are ReLU, tanh, and softmax. In this work, we use ReLU which
stands for Rectified Linear Unit. ReLU is used because it saves a lot of computation
time by accelerating the training speed as the derivative of ReLu is 1 for positive input
[16]. Due to a constant value, neural networks do not need to take additional time
for computing error terms during the training phase. ReLU, the activation function,
determines the value of the output.

• Output signal: Finally, the weighted sum obtained is turned into an output signal
by feeding the weighted sum into an activation function. As the weighted sum in our
example is 27, which is greater than our threshold value of 20, the model predicts it
to be a rainy day.

The method by which the inputs are tranformed to achieve the output signal is illustrated
in figure 2.9.
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Figure 2.9: Computational model of a neuron. This illustrates the way in which inputs
are transformed to predict an output. The illustration is based on the weather forecasting
problem discussed in section 2.3.3.

Loss function

Now, we need a metric to detect the quality of the predicted output. A loss function
compares the target and predicted output values. It measures how well the neural network
models the training data. During training, we aim to minimize this loss between the
predicted and target outputs. In this work, the loss function used is, ’mean squared error
(MSE)’. The loss is the square of the difference between true and predicted values [mse]. It
is the average of the calculated loss functions for all training examples in the training set.
The loss function has an important job in that it must faithfully distill all aspects of the
model down into a single number in such a way that improvements in that number are a
sign of a better model. Mathematically speaking, it can be denoted as given below [mse].

MSE = 1
N

N∑
i=1

(yi − ŷi)2

Here, ŷi is the predicted value and N is The number of samples we are testing against. In
the case of mini-batches (discussed under the section ’Backpropagation’), N stands for the
batch size after which the parameters are changed.

Optimization

Gradient descent is the optimization technique used in this work. The term, gradient, refers
to the quantity change of output obtained from a neural network when the inputs change a
little. Gradient Descent incrementally adjusts the parameters based on the gradient of the
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Figure 2.10: The Gradient descent algorithm. The approach here is to change the training
parameters at a suitable learning rate to find the minimum loss point (Image from [17]).

parameters. The gradient descent algorithm has the central equation as given below.

θi+1 = θi − µ × ∇θi

Here, θi is the parameter, µ is the learning rate and i is the number of the ongoing iteration
over the samples under consideration. The learning rate indicates how fast the parameters
should be changed as the machine learns [17]. To summarize, the gradient descent method
is used to minimize the loss. It is like going down a slope where you have to determine how
fast you should walk to reach the foot of the slope [17]. This idea is illustrated in figure
2.10.

Backpropagation

The backpropagation algorithm tells how a machine should change its internal parameters
[18] like weights and biases that are used to compute the representation in each layer from
the representation in the previous layer [18] in order to improve the network’s performance.
We cannot change the activations directly as we have control only over the weights and
biases. The activation is the weighted sum of all the activations from the previous layers.
In the example of rain prediction, this value is 27. In case this value comes out to less than
20, which is the threshold that we set earlier, we need to change the weights and biases such
that the activation increases. The same backpropagation process has to be implemented for
every other training example, recording how the weights and biases should be adjusted for
each one of them and then an average is computed together with all those desired changes.
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The weights and biases are optimized based on the Gradient Descent Algorithm discussed
in the immediately previous section. It is a time-consuming computation to add up the
influences of every single training example. So, to speed up the process, the training data
is randomly shuffled and divided into several mini-batches. Then the Gradient Descent
is computed according to each mini-batch rather than the entire set of training examples.
Each mini-batch gives a good approximation of the gradient of the loss function 3. At the
end of the batch, the predictions are compared to the expected output variables and an
error is calculated. This error is then propagated back within the whole network, one layer
at a time 3. We start at the output layer and propagate backward, updating weights and
biases for each layer, except the input layer, to have the desired output in the output layer.
In this way, by repeating the process, the model improves its performance and gets trained
to solve the task more efficiently for which it is designed.

2.4 Computation tools

This section will give a brief overview of some important tools that were used to build up
the computer program for this thesis. There are many other required back-end tools as
well but this section aims at highlighting only the major game changers.

Pytorch

The neural network architecture that is discussed in section 5.1.1 is developed in the Pytorch
[19] framework. The training and testing of the neural network are completely done with
this tool. PyTorch is an open-source machine learning framework. Pytorch is widely used
in academia and industry for applications such as computer vision and natural language
processing 4. This powerful framework was originally developed by Adam Paszke, Sam
Gross, Soumith Chintala, and Gregory Chanan, under the umbrella of Meta AI [20].

• GitHub source repository link: https://github.com/pytorch/pytorch

Natural language toolkit

The major part of this thesis is processing text data generated from research papers and
extracting relevant information from these papers. The Natural language toolkit (NLTK)

3Source: https://www.3blue1brown.com/lessons/backpropagation
4Source: https://dl4nlp.info/en/latest/
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Figure 2.11: Lemmatizing words using NLTK

Figure 2.12: Generation of stop words in English language using NLTK

[21] comes into the picture now. NLTK [21] is a well-known python package to deal with
human language data. It is a very efficient library to analyze natural language. In this
work, we use this package to lemmatize the words in the text. This helps us to convert all
the plural forms to the respective singular forms. An implementation example is illustrated
in figure 2.11. NLTK provides easy-to-use interfaces to over 50 corpora and lexical resources
such as WordNet [21]. Thus, in the very initial phase of data processing, we use NLTK
to generate the common list of stop words (refer the Step 1 of the section, ’Workflow of
the keyword extraction algorithm’ on page 29 to understand what stop words are) in the
English language. This makes it easy to clean the text in the first round of data processing.
An example of a code snippet to generate these stop words is illustrated in figure 2.12.

• GitHub source repository link: https://github.com/nltk/nltk

Rapid Automatic Keyword Extraction (RAKE)

The algorithm used for the extraction of keywords is RAKE [22]. The methodology to
extract keywords from the research data is discussed in detail in section 3.1.4.

• GitHub source repository link: https://github.com/csurfer/rake-nltk
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NumPy

NumPy [23] is the fundamental package for scientific computing in Python. It is a Python
library that provides a multidimensional array object, and various derived objects such as
masked arrays and matrices. This package is an easy way for performing logical operations
on arrays. At the core of the NumPy package, is the ndarray object. This encapsulates
n-dimensional arrays of homogeneous data types, with many operations being performed
in compiled code for performance. Vectorization going on in the back end in the form of
a pre-compiled C code leads to the absence of any explicit looping and indexing in the
code [23]. Thus NumPy makes computations fast and thus, it has been used a lot in this
work. The adjacency matrix operations discussed in section 2.2.2 have been performed
using NumPy. Other than this, the performance of the model discussed in section 5.1,
during training and testing is also stored using NumPy. Numpy comes into the picture for
several other small computations as well in this work.

• GitHub source repository link: https://github.com/numpy/numpy

SciPy

SciPy [24] is a free and open-source Python library used for scientific and technical computing.
SciPy contains modules for optimization, linear algebra, integration, interpolation, special
functions, FFT, signal and image processing, ODE solvers, and other tasks common in
science and engineering. The SciPy package is currently distributed under the BSD license
and its development is sponsored and supported by an open community of developers. The
basic data structure used by SciPy is a multidimensional array provided by the NumPy
package which we have already discussed in the previous section. NumPy also provides
some functions for linear algebra, Fourier transforms and random number generation but in
a generalized manner like the equivalent functions in SciPy. In this work, sparse matrices
are used to store the data of future edges. This is later used to create the historic data to
train the neural network discussed in section 5.1.1.

• GitHub source repository link:: https://github.com/scipy/scipy

Gephi

We use the tool, Gephi [25], for the visualization of the semantic network in Optics. Gephi
is a free and open-source data exploration and visualization software for all kinds of graphs
and networks. This software package is written in Java on the Netbeans platform. The
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plots of the semantic network (discussed in detail in chapter 3) developed in this thesis
are shown in figure 3.8. These plots have been made using Gephi. This makes it easier to
understand the connected research topics by quickly looking at the visualization.

• GitHub source repository link: https://github.com/gephi/gephi



Chapter 3

Creation of the semantic network

The main aim of the semantic network that we will discuss in detail in this chapter is to
store the huge amount of research data in the field of Optics, in the form of a graph. This
will give insights into the fields that have already been investigated together and will make
us think about the potential connections which are unconnected as of now. The semantic
network created in this chapter and the methodology followed is based on the idea of the
semantic network of Quantum Physics [5] and the semantic network of Artificial Intelligence
[6]. Figure 3.3 gives the overview of the steps followed to prepare and process the data in a
snapshot. After implementing every block illustrated in figure 3.3, we get a summary of
the entire set of research articles (published on arXiv 1, discussed in section 3.1.1) relevant
to Optics in the form of a list of important words appearing in the article.

3.1 The dataset

3.1.1 Data source (arXiv)

The arXiv 1, introduced by Paul Ginsparg, is an online repository for self-archived, so-called
e-prints of scientific papers covering different fields of physics, science, mathematics, and
biology. arXiv began in the print-only era in 1991 [26]. Started at Los Alamos National
Laboratory, and known as xxx.lanl.gov until 1998, it was intended to level the global research
playing field by providing equal-time access to the latest research results [26]. This was
before the World Wide Web, and publishers and librarians at the time were skeptical about
any near-term transition to digital content [26]. In the early 1990s, arXiv played a pioneering

1Source: https://arxiv.org/

25
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Figure 3.1: Growth in papers published under the category of Optics

role as an automated repository and was the first to use an abstract-landing web page for
articles, with links to associated resources, including full-text postscript, and then pdf [26].
Authors upload their pre-prints (before peer review) or post-prints (after peer review) in
source format (mostly TEX), which are automatically converted into postscript or PDF
files. Since its foundation, it showcased the possibility of distributing scientific documents
freely over the internet, which led to the current revolution in scientific publishing, known
as the open access movement. As of April 16, 2022, arXiv consists of 2,051,413 papers. So
it’s not astonishing that it is the largest centralized Open Access archive available today. In
arXiv, a system of endorsements of other authors leads intrinsically to better data quality.
After analyzing data from the source, the graphical representation shown in figure 3.1 is
obtained. This graph gives a clear vision of how rapidly the publications on arXiv relevant
to the field of Optics are growing.

3.1.2 Source data structure

We use the data from Kaggle 2 (figure 3.2) which is a mirror of the original arXiv data
because the full dataset is rather large (1.1TB and growing), this dataset provides only

2Source: https://www.kaggle.com/datasets/Cornell-University/arxiv
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Figure 3.2: Paper data Example [27]

key data of papers in a file in the json format. This file contains an entry of each paper’s
information broken down into categories as given below.

• id: arXiv ID (can be used to access the paper)

• submitter : Who submitted the paper

• authors: Authors of the paper

• title: Title of the paper

• comments: Additional info, such as number of pages and figures

• journal-ref : Information about the journal the paper was published in

• doi: DOI of the paper

• abstract: The abstract of the paper

• categories: Categories / tags in the arXiv system

• versions:The version history

3.1.3 Data preprocessing

Good quality data is the heart of any machine learning problem. The data quality directly
impacts the accuracy of the results that our neural network delivers. We have the main
database from arXiv but this is not the final dataset that will be used to train the machine
learning model. We have to do some data mining from the source data from arxiv. For the
current problem statement, all the papers published under the category physics.optics are
extracted from the source and processed for further use. This is a total of 35,717 papers.
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Figure 3.3: Data preprocessing workflow. This block diagram illustrates the steps and the
sequence that is followed to get the research articles, process them and generate a list of
important words that highlight the topic of the article.

The main concern now is transforming the data in such a way that the machine can
process it efficiently. We are now interested in the titles and abstracts of all the papers
because these sections give us an overview of what the paper is about and which areas
relevant to Optics have been investigated in that particular publication. The data is in the
form of raw text as the titles and abstracts of all the papers, which is human-written text
and thus, can’t be used directly for computing insights. The data that is relevant for us is
only some main/ technical words that are used in the field of Optics and the rest of the
text can be discarded. This is because there are some words in every piece of text that can
throw light on what has been discussed in the text without actually having to read it as
sentences.

3.1.4 Keyword extraction

Keyword extraction is a text analysis technique to summarize the content of texts and
recognize the main topics discussed. Keyword extraction breaks down human language so
that it can be processed and analyzed by machines. This is one of the crucial steps as the
result of this step will give us an idea of how our dataset will look like.

Why is keyword extraction important?

Keyword extraction helps to find the most important words and phrases within massive sets
of data (like new articles, papers, or journals) without having to read the entire content.
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Figure 3.4: Workflow of the RAKE Algorithm

This helps to automatically index data, summarize a text, or generate tag clouds with the
most representative keywords.

Workflow of the keyword extraction algorithm

The algorithm used for extracting keywords is Rapid Automatic Keyword Extraction
(RAKE) [22]. One of the critical points made by the creator of RAKE is that keywords
frequently contain multiple words but rarely contain punctuation, stop words, or other
words with minimum lexical meaning [22]. Once we have the text corpus, RAKE splits the
text into a list of words, removing stop words from the same list. The return list is known
as Content Words. Ignoring them will make our main corpus lean and clean [22]. This can
be explained better with the help of an example. Suppose, we have a piece of text as given
below that needs to be processed to extract keywords.

"Deep Learning is a subfield of AI. It is very useful.“

• Step 1: Preprocessing and candidate generation
The very first step is to split the text into a list of words and remove stop words
from that list. Stop words are words that do not add much meaning to a sentence.
Ignoring these words does not make any difference to the meaning of the sentence.
This step returns a list of what is known as content words [22].

Suppose our list of stopwords and phrase delimiters look like these:
stopwords = [is, a, of, it, very]
delimiters = [.]

After the stopwords and delimiters are removed, the leftover words are the ’Candidates’.
Candidates = [deep, learning, subfield, ai, useful]

This means that every word from the list above is a potential keyword from the text
we processed.

• Step 2: Candidate scoring
In this step, we will score the candidates and then choose the ones with the highest
scores. Let us now try to understand what scoring means here.
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Table 3.1: Word frequency. The number corresponding to every word in this table indicates
the number of times that particular word appears in the piece of text that is being processed.

Table 3.2: Word co-occurrence count. The co-occurrence count is 1 if we pair every word
with itself. When a word is paired with other words in a sentence and if these words appear
next to each other, the count for this pair is 1. In this case, the words, ’deep’ and ’learning’
appear one after the other in the text and thus, both of these have a co-occurrence count of
1 when paired with each other. This is important to extract ’deep learning’ as one keyword
and not separately as two keywords, ’deep’ and ’learning’.

1. The first step to begin with candidate scoring is determining the word frequency
[22]. This is the number of times that word appears in the text we are processing.
This data can be seen in table 3.1.
2. The next step is to get the word co-occurrence count and the degree for each word
which is the total sum [22]. This metric identifies words that occur often in longer
candidate keywords. This data can be seen in table 3.2.
3. Next, we divide the degree by the frequency for each word to get a final score
[22]. This score identifies words that occur more in longer candidate keywords than
individually. The score for each candidate is shown in table 3.3.

Table 3.3: Word scores. This number gives an overview of every word’s appearance with
other words in the text. This gives an idea of the word quality. A higher number here means
that the particular word appears with many other words and is a word of high importance.
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Table 3.4: Scores of candidate keywords. This number indicates the quality of the whole
keyword. The higher the score, the more important is the keyword to help throw light on
the gist of the text.

Figure 3.5: Concept list snapshot. These are some randomly chosen concepts from the final
concept list to give a brief idea of how the list looks like.

• Step 3: Final ranking
Now, from the processing done in the previous steps, we already have the scores for
all the words. In this step, we rank the words based on their scores. This data can be
seen in table 3.4 in which the keywords are sorted in the descending order of their
score value.

3.1.5 Final concept list

So, now we know how the RAKE [22] algorithm works. The text we pass in our case is
the title and abstract of each paper one by one. Then all the 3 steps mentioned in the
previous section are implemented to get the keywords ranked based on their score computed
from the text analysis. It is up to us how many first ’n’ number of words we would like to
pick from this by setting a cut-off value to discard the rest and get only good quality final
words. These keywords finally form our concept list. figure 3.5 gives some idea of how the
keywords look in our case. In our case, once we have the list of concepts, we sort these in
the descending order of their length as a string, meaning based on the number of characters
the concept has. Thus, the initial concepts have more letters than the last ones.
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Figure 3.6: Concept list extraction example (The paper title and abstract shown in this
image is from [28])

3.1.6 Further analysis

The creation of the concept list requires an ample amount of time and vigilance to get
good-quality words that give you an overview of the field, in this case, Optics. Sometimes,
there still might be some generalized words that do not necessarily throw light on a research
field in Optics and can be used in any context. Knowledge of a specific field plays an
important role here to decide, which is a good concept and which is not. Let us take an
example of the concept, light source. Now, when it comes to the field of Optics, this is a
very generic term and it is fine to not treat this as a concept. Some other words are the ones
that have the words high, low, or average in them. The concepts like high power, low power,
or average power do not convey the necessary information relevant to Optics. However,
there are not many cases like this if we compare with the whole number of concepts as the
keyword extraction algorithm discussed earlier efficiently does its job.

3.2 Creation of the semantic network

We had an overview of what a semantic network is in Section 2.2.1. Here, we will discuss in
detail the underlying logic used to develop the semantic network of Optics. The various
building blocks for such networks and their analogy to our work will also be presented.
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Figure 3.7: Logic behind the semantic network creation (image from [28], [29], [30], [31])

3.2.1 Nodes of the semantic network of Optics

We had an overview of what a graph node means in general in section 2.2.1. In our case,
each node is equal to each concept in our concept list. We have 15,750 concepts that we
have extracted from the research papers in the field of Optics from arXiv. Thus, we have
15,750 nodes in our semantic graph. Using these words directly will make it harder to
process this data further. To avoid further problems, we assign a unique id to every concept.
This creates a dictionary of all the concepts with their unique ids. The first concept in the
list has id ’0’ and the last one has ’15,749’. Thus, while dealing with these concepts further,
we will use their unique id instead of the concept in words, directly. That means each node
in the semantic network has one of the numbers from 0 to 15,749.

3.2.2 Edges of the semantic network of Optics

We had an overview of what a graph node means in general in section 2.2.1. In the case of
our semantic network, we define the edge as the co-occurrence of the two concepts in the
same paper. Suppose, we have two concepts under consideration, concept A and concept
B which appeared together in the title and abstract of a research paper in 2014, we draw
an edge connecting the nodes assigned to these concepts. This can be better understood
with the illustration shown in figure 3.7. In addition to this, we also add a label to every
edge which is a time stamp, that is, the publication date. We add the time stamp as a
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Table 3.5: Node and edge number for the networks shown in figure 3.8

day count from January 1, 1990, to have a uniform baseline. So, we count the number of
days from our baseline to the publication date when the concepts appeared together. As an
assumption, if the exact date of our dummy publication is November 12, 2014, our time
stamp will be 9081. The final semantic network has 2,907,489 edges.

3.2.3 An attempt at synonym detection

We use cosine similarity as the measurement to decide if the nodes are similar or not. The
methodology of cosine similarity has been discussed in section 2.2.2. We calculate the values
for every pair of nodes in the semantic network. Based on the values, we decide if one of
the nodes can be removed or merged with other nodes or not. However, in some cases, the
pairs recognized as synonyms were antonyms. One of the most common recurring examples
is of the concepts, linear optics and nonlinear optics. The context in which two concepts
are used or the other concepts with which these two concepts appear might be common to
a greater extent but these two fields are not the same. These are antonyms because these
are the two different branches of Optics. Also in some cases, the concept pairs detected as
synonyms got detected because these two concepts were used together multiple times by
the same author. This highlights a key issue that research graph analytics is affected by the
way different researchers use different words to refer to a common scientific term. So, we
decided to not remove nodes based on the conclusions from cosine similarity Calculations.
This in turn, also prevents us from distorting the graph. This analysis also helps us realize
the importance of the co-occurrence of concepts. After all, we are not just interested in
how two nodes are connected but also in how these two nodes are connected to other nodes
in the network. If we merge some nodes based on cosine similarity and form clusters, we
can end up losing information about individual connections of every concept in the cluster.
At this stage, cluster analysis can make computations complicated and time-consuming so
this can be omitted at the cost of no loss in further analysis. So, even though we don’t
use cosine similarity to filter nodes, this is a very helpful filter to have an optimized list
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(a) Connected concepts in the year 1995. Here, the red circles denote nodes and
the respective concepts. The blue lines represent the edges. The numbers in
green are the labels which are the timestamps. The timestamps are calculated
as the total number of days from a uniform baseline date until the publication
date of the article in which the two concepts connected by the edge appeared
together.

(b) 0.01% of the connected concepts in the year 2021

Figure 3.8: Growth in the co-occurrence of concepts from 1995 to 2021
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of predictions in the later stage. This is also one of the important factors to develop the
predictive model which is discussed in detail in Chapter 5.

3.2.4 Visualizing the semantic network

After all the data processing and connection generation has been accomplished, the next
step is to visualize this data. Since this is a huge graph, we have used the tool Gephi [25],
discussed in section 2.4, to plot the giant web of Optics. We plot the network such that
it is force directed. The tool Gephi simulates a physical system to spatialize a network.
Nodes repel each other like charged particles, while edges attract their nodes, like springs.
These forces create a movement that converges to a balanced state. This final configuration
is expected to help the interpretation of the data. We have used the ForceAtlas2 package
[32] of Gephi for this purpose. The force-directed drawing places each node depending on
the other nodes. This process depends only on the connections between nodes.

The plot of the entire semantic network is difficult to visualize on a piece of paper. So, the
visualizations for the evolution are shown in Figure 3.8 that compares the semantic network
of the concepts used in the year 1995 and just 0.01% of the connections of the concepts
used in 2021. This depicts the enormous growth in the way concepts are investigated. Some
key information about these networks is shown in table 3.5.



Chapter 4

The evolution of concepts in Optics

4.1 Data analysis of popular concepts

To predict future research trends, it is very essential to have a look at the trends in the
past as well. This can play a crucial role in developing new methods to have insights into
what is coming ahead. To have the idea of these emerging concepts, data is analyzed over
different periods to investigate which concepts from the concept list appeared in a paper on
arXiv, published under the category, ’physics.optics’ for the first time. The next thing to be
understood is which of these concepts remained popular in the next few years as well. The
data is analyzed over 5 years, 3 years, and 1 year. To understand this better, let us pick up
a period, say, 5 years. Suppose, the start year is set to 2016, the concept that first time
appeared in a paper published in 2016 and has the most number of papers collectively in
the years from 2016 to 2020 needs to be identified. The same logic applies to other periods
and starting years. The concepts that turned out to be investigated frequently over the
different periods are discussed in the next sections.

4.1.1 Concepts evolved over 5 years

This section discusses the fields that were most popular among scientists over five years
by appearing in the most number of the papers. This trend can be visualized with the
illustration shown in figure 4.1. It would be good to highlight here that the concepts
like electromagnetic field and atomic system go back to the early 19th and 20th centuries
respectively. However, these turn out be the rapidly emerging concepts for the years 1995
and 1996 respectively. The reason why this happens here is we have used only arXiv as
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Figure 4.1: Plot of the evolving concepts [period = 5 Years]

the source of the research papers to perform this analysis and other tasks discussed in this
work. Thus, the emerging concepts are based only on arXiv data and don’t indicate the
actual discovery period of a particular field.

Atomic system (1995 - 1999)

An atom is the smallest particle into which an element can be divided without losing
its chemical identity 1. This concept first appeared in the paper titled, ’Squeezing in
the interaction of radiation with two-level atoms’ [33] in 1995 on arXiv. The method
proposed in this paper decreases the uncertainties of the angular-momentum quadratures
representing the two-level atomic system in the interaction of the two-level atoms with
quantized radiation [33].

Linear collider (1996 - 2000)

A collider is a type of particle accelerator that brings two opposing particle beams together
such that the particles collide 2. This concept first appeared in the paper titled, ’Laser
cooling of electron beams for linear colliders’ [34] in 1996 on arXiv. In this paper, a novel
method of electron beam cooling is considered which can be used for linear colliders [34].

1Source: https://atomic.lindahall.org/what-is-an-atom.html
2Source: https://news.fnal.gov/2013/08/fixed-target-vs-collider/
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Electromagnetic field (1997 - 2001)

An electromagnetic field is the physical field extending throughout space that delivers
electric and magnetic effects [35]. Electromagnetic fields obey the quantum version of
Maxwell’s equations [35] and most of the optical effects are explained based on this. This
concept first appeared in the paper titled, ’A 1D Model for N-Level Atoms Coupled to
an EM Field’ [36] in 1997 on arXiv. A model for n-level atoms coupled to quantized
electromagnetic fields in a rod-like geometry of diameter ranging from 10-100 nanometer
was proposed in this paper [36].

Refractive index (1998 - 2002)

The refractive index of an optical medium is a dimensionless number that indicates the
light-bending ability of that medium. This concept first appeared in the paper titled, ’A
simple method for the determination of slowly varying refractive index profiles from in
situ spectrophotometric measurements’ [37] in 1998 on arXiv. Here, the refractive index of
different optical films were calculated using several methods. [37].

Light scattering (1999 - 2003)

Light scattering is a phenomenon that occurs when light changes its direction after hitting
a small particle causing optical phenomena such as the blue color of the sky, and halos.
This concept first appeared in the paper titled, ’Differential light scattering: probing
the sonoluminescence collapse’ [38] in 1999 on arXiv. Here, a light scattering technique
was proposed that is capable of information retrieval without the need of fast electronic
equipment [38].

Free electron laser (2000 - 2004)

A free electron laser is a light source producing extremely brilliant and short pulses of
radiation. This concept first appeared in the paper titled, ’Photon collider at TESLA’ [39]
in 2000 on arXiv where the status of a photon collider based at TESLA was discussed. The
key element in photon colliders is a very powerful laser system such as in a free electron
laser and thus, this laser system was one of the considered approaches for the TESLA
project [39].
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Phase velocity (2001 - 2005)

Phase velocity is the speed at which a point of constant phase travels as the wave propagates
[40]. This concept first appeared in the paper titled, ’Light Propagation For Accelerated
Observers’ [41] in 2001 on arXiv. In this study, it is shown that for a moving observer, a
linearly polarized plane wave has two modes of propagation in a stationary, homogeneous
and isotropic medium according to Hertz’s version of Maxwell’s theory. Of the two modes,
the second mode has a phase velocity that is controlled by the motion of the observer and
some applications of this second mode in emerging technologies are outlined in this paper
[41].

Surface wave (2002 - 2006)

A surface wave is a mechanical wave that propagates along the interface between differing
media. This concept first appeared in the paper titled, ’Photonic Approach to Making a
Left-Handed Material’ [42] in 2002 on arXiv. It was noticed during this study that the
surface waves localized at the dielectric interfaces can be either surface plasmons or phonons
[42].

Orbital angular momentum (2003 - 2007)

The orbital angular momentum of light is the component of the angular momentum of a
light beam that is dependent on the field spatial distribution. This concept first appeared in
the paper titled, ’Molecular chirality and the orbital angular momentum of light’ [43] in 2003
on arXiv. Optical beams with different types of helicity have orbital angular momentum
[43]. Here, the wave-front surface of the electromagnetic fields assume helical form. This
study assesses what new features, if any, can be expected when such beams are used to
interrogate a chiral system.

Metal film (2004 - 2008)

A metal film is a layer of metallic material ranging from fractions of a nanometer (monolayer)
to several micrometers in thickness. This concept first appeared in the paper titled, ’Fano-
type interpretation of red shifts and red tails in hole array transmission spectra’ [44] in
2004 on arXiv. In this paper, an opinion is presented to understand the spectral features
reported in the past experiments performed on holes in metal films [44].
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Finite element method (2005 - 2009)

The finite element method is used for numerically solving differential equations arising in
engineering and mathematical modeling. This concept first appeared in the paper titled,
’Numerical Investigation of Light Scattering off Split-Ring Resonators’ [45] in 2005 on
arXiv. In this paper, numerical solutions to the time-harmonic Maxwell’s equations by
using advanced finite-element methods (FEM) have been presented [45].

Invisibility cloak (2006 - 2010)

Cloaking in general refers to hiding objects from the eye, and in particular, the radar [46].
This concept first appeared in the paper titled, ’Calculation of material properties and
ray tracing in transformation media’ [47] in 2006 on arXiv. The method to calculate the
material properties associated with a coordinate transformation (changing the coordinate
system) has been shown here and demonstrated using spherical and cylindrical shaped
invisibility cloaks by performing ray tracing on them [47].

Transformation optic (2007 - 2011)

Transformation optics is a branch of Optics that uses coordinate transformations. This
concept first appeared in the paper titled, ’Design of Electromagnetic Cloaks and Con-
centrators Using Form-Invariant Coordinate Transformations of Maxwell’s Equations’ [48]
in 2007 on arXiv. The material design of a square-shaped cloak and an electromagnetic
field concentrator were presented here by using coordinate transformation (changing the
coordinate system). [48].

Metamaterial structure (2008 - 2012)

Metamaterials are artificially engineered materials designed to induce customized properties
in a material that originally does not exist [49]. This concept first appeared in the
paper titled, ’Optical Activity of Planar Achiral Metamaterials’ [50] in 2008 on arXiv.
Optical activity and circular dichroism are linked to chirality (helicity) of organic molecules,
proteins and inorganic structures, can also be observed in non-chiral artificial media [50].
The metamaterial structure used for this study yields a strong resonant optical activity
and thus, has been used here to report this classical phenomena [50].
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Quantum emitter (2009 - 2013)

A quantum emitter is generally defined as a quantum system that is capable of radiative
optical transitions 3. This concept first appeared in the paper titled, ’Orientation-dependent
spontaneous emission rates of a two-level quantum emitter in any nanophotonic environment’
[51] in 2009 on arXiv. In this paper, a theoretical study of the spontaneous emission rate of
a two-level quantum emitter in any nanophotonic system has been presented.

Parity time (2010 - 2014)

A parity-time (PT) symmetric system is a special non-Hermitian system of which its
Hamiltonian possesses real eigenvalues [52]. This concept first appeared in the paper titled,
’Nonlinear suppression of time-reversals in PT-symmetric optical couplers’ [53] in 2010 on
arXiv. The effect of nonlinearity-induced PT-symmetry breaking is described analytically
and demonstrated numerically in this paper [53].

Topological insulator (2011 - 2015)

A topological insulator is a material whose interior behaves like an electrical insulator while
its surface behaves like an electrical conductor. This concept first appeared in the paper
titled, ’Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3’
[54] in 2011 on arXiv. The phonon dynamics in the topological insulator, Bi2Se3 crystals
are studied in this paper [54].

Graphene sheet (2012 - 2016)

Graphene sheets comprise carbon atoms attached in hexagonal shapes and every carbon
molecule covalently sticks to three other carbon atoms 4. This concept first appeared in
the paper titled, ’Superradiance mediated by Graphene Surface Plasmons’ [55] in 2012 on
arXiv. In this paper, it is demonstrated that the interaction between two emitters can be
controlled using the efficient excitation of modes in graphene surface plasmons supported
by two-dimensional graphene sheets [55].

3Source: https://www.physik.hu-berlin.de/de/nano/forschung/quantumemitters
4Source: https://nanografi.com/popular-products/graphene-sheet-size-10-cm-x-10-cm-thickness-35-m-

highly-conductive/
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Topological edge state (2013 - 2017)

An edge state consists of pairs of states which have opposite spins and propagate in opposite
directions [56]. This concept first appeared in the paper titled, ’Imaging topological edge
states in silicon photonics’ [57] in 2013 on arXiv. The topological edge states of light in a
two-dimensional system were noticed during this research [57].

2d material (2014 - 2018)

If only one of the three dimensions of a material is nano-sized, it would be a 2d material,
resembling a large, but very thin sheet like a piece of paper 5. This concept first appeared
in the paper titled, ’Single-molecule study for a graphene-based nano-position sensor’ [58]
in 2014 on arXiv. Here, several experiments were performed with dibenzoterrylene (DBT)
molecules to show a genuine manifestation of a dipole interacting with a 2D material.

Dissipative kerr soliton (2015 - 2019)

Dissipative Kerr solitons are self-organized optical waves arising from the interplay between
the Kerr effect and dispersion [59]. This concept first appeared in the paper titled,
’Dissipative Kerr solitons in optical microresonators’ [60] in 2015 on arXiv. This paper
describes the discovery and stable generation of temporal dissipative Kerr solitons in
continuous-wave (CW) laser-driven optical microresonators [60].

Deep learning (2016 - 2020)

Deep learning is a machine learning technique that teaches computers to do what comes
naturally to humans, that is, learn by example. This concept first appeared in the paper
titled, ’Deep Learning with Coherent Nanophotonic Circuits’ [61] in 2016 on arXiv. Here, a
new architecture for a neural network has been proposed that uses unique advantages of
optics and promises an increase in the computational speed for conventional learning tasks
[61].

Soliton microcombs (2017 - 2021)

Solitons are nonlinear waves that maintain their shape while propagating at a constant
velocity 6. Soliton microcombs are phase-locked microcavity frequency combs. This concept

5Source: https://www.ossila.com/en-eu/pages/introduction-2d-materials
6Source: https://www.tu-chemnitz.de/physik/KSND/abb/node6.html
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Figure 4.2: Plot of the evolving concepts [period = 3 Years]

first appeared in the paper titled, ’Towards Visible Soliton Microcomb Generation’ [62] in
2017 on arXiv. Soliton microcombs at 778 nm and 1064 nm using on-chip high-Q silica
resonators have been demonstrated here [62].

4.1.2 Concepts evolved over 3 years

It is not necessary that a concept popular for five years is popular for three years as well.
Figure 4.2 shows the concepts that remained popular over a three year period. Some of the
concepts like graphene sheet, deep learning remained popular over both the periods under
analysis.

4.1.3 Popular concept over 1 year

As mentioned at the beginning of the previous section, the popularity of concepts can differ
over different periods. The visualization of popular concepts for every year can be visualized
in the graph depiction in figure 4.3.
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Figure 4.3: Plot of the popular concepts [period = 1 Year]
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Chapter 5

Prediction of future research trends

In the last chapters, we had an overview of what the original data looks like and how we
create a semantic network out of it by multiple data processing methods. This is the final
dataset that we are going to use for the procedure henceforth to predict the future research
trends in Optics by using an artificial neural network. This chapter will give an overview of
the architecture of the neural network, various parameters, and the algorithm followed.

5.1 The model

5.1.1 The architecture

To solve the prediction task, we employ a feedforward neural network as described in section
2.3.2. The model used has one input layer, three hidden layers, and one output layer. The
input layer has 15 neurons. These 15 neurons are nothing but the 15 extracted features
from the semantic network we created earlier. The logic behind this feature extraction is
discussed on pages, 49 and 50. The consecutive hidden layers after this have 100, 100, and
10 neurons each. The last one is the output layer with 1 neuron. Between every layer, there
is an activation function layer. The activation function used here is ’Rectified Linear Unit
(ReLU)’ which we discussed in section 2.3.3. During the training process discussed in section
5.1.2, the model is continuously optimized using Gradient Descent and Backpropagation
(discussed in section 2.3.3) to minimize the loss as the data is passed from one layer to
another. The loss function used is ’Mean Squared Error’ (please refer to section 2.3.3),
which helps us determine the quality of the model. The layers of the model used here are
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Figure 5.1: Neural network layers

summarised in figure 5.1 and figure 5.2 shows a generic structure of the feedforward neural
network.

5.1.2 Link prediction model workflow

In this section, the procedure to determine new connections after the specified number of
years will be discussed. Before we proceed further, let us have an overview of the problem
our trained neural network needs to solve. In Chapter 3, we discussed the process we
followed to develop the semantic network. From this network, we already know what is
connected. However, there are still many unconnected pairs, and finding this out can be
fast and efficient using a neural network. This is the exact problem our model needs to
tackle. The model needs to find out the most probable connections between 2 nodes in the
future three years which are not been connected until now.

Initially, we train the model to get the predictions related to the past research work
from the past data. So, let us understand this with the help of an example that has been
implemented in this thesis. In this thesis, we are interested in the dynamics of the semantic
network in 2024. For faster computations, we consider the minimal vertex degree to be
used in the predictions as 5 and the minimal edges in the range from 0 to 3 that have a
chance to form. We have already prepared a semantic network with the help of research
data published on arXiv until 2021. Now, first, we have to build up a model such that it
can predict for 2021 from the past data. We call this historic training data. The model is
trained based on the properties of the nodes in the year 2013, 2014 and 2015. After this,
the model first learns to predict for the year 2018. Once we have the trained model, it is
very important to evaluate the efficiency of the model. In order to this, the evaluation data



5.1. THE MODEL 49

Figure 5.2: Sequence of the layers in the network used to build the link prediction model.
For better visualization to give an overview of the interconnections, the number of neurons
in each layer has been reduced. In the real network, the first, second, third and fourth
layers have 15, 100, 100 and 10 neurons respectively. The fifth layer that where we receive
the output as a prediction connection score (discussed in section 5.2.4), has one neuron.
This plot is made using the NN SVG tool [63]

is prepared based on the properties of the nodes in the year 2016, 2017 and 2018. Then, we
get the predictions for the year 2021. This is a very important step to tune our model to
get the best out of it. It is already known to us what is going on in the field of research
in 2021 as we already have all the required material at hand. This helps us to judge the
model’s accuracy. This explanation can be understood better with the help of figure 5.3(a).
Another simple illustration shown in figure 5.3(b) summarizes the basic idea of the link
prediction task.

Another very important part of training an artificial neural network is finding hidden
patterns in our dataset and extracting features to get good-quality predictions. In this
case, these features are generated based on the semantic network we created earlier. These
features are nothing but the properties that describe the different nodes and edges of the
network. In total, we have to generate fifteen features. These features are computed for
every vertex pair (v1, v2). Let us now have a closer look at the fifteen features which are
as given below.

• First set (6 features): The degree of both the vertices, v1 and v2. The degree of
every concept represents the number of times it has appeared with other concepts
and thus, there can also be multi edges between the same two concepts. This degree
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(a) Methodology of extracting data for different time periods to train the model for link prediction

(b) Graphical illustration of the link prediction model. The red circles are the nodes assigned to
every concept and the blue color lines are the edges to show the connected concepts.

Figure 5.3: Link prediction model workflow

is found for the current year and the previous two years. Thus, for every node, we
have node degrees for three years each.

• Second set (6 features): The number of shared neighbours in total for v1 and v2
for the current year and previous two years. The number of shared neighbors of every
concept represents the number of connections to the concept by a path of length 1,
that is, there is one direct path connecting the two concepts.

• Third set (3 features): The last set of three properties is the total number of
shared numbers between v1 and v2 in the current year and the previous two years.

In total, we have 15750 x 15750 edges as the total number of concepts we have is
15750 which equals to the number of nodes. This amounts to around 2.48 million edges
and out of which, only around 10% are connected. That means, we have around 2.23
million unconnected edges. Computing the set of fifteen features is very time and memory
consuming if it is done for the entire set of edges to train the model. Therefore, to make the
computation faster and less expensive, we choose a random subset consisting of 107 edges.
These fifteen features are then passed as input to the different layers discussed in section
5.1.1 and illustrated in figure 5.1. So, 99% of the unconnected edges are not even considered
in training. There are more cases of connected edges in the training dataset. The benefit of
doing this is observed in the feature extraction process. Since we have more connected edges
in the dataset, we can efficiently compute all the possible properties that throw light on the
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Figure 5.4: Early stopping checkpoint

fact that why certain nodes are connected. This helps us to predict the connections in the
future. After all, we are more interested to see the possible edges instead of the impossible
ones. Thus, we significantly improve the precision and spend less time on computation.
The model is trained for 100,000 iterations with early stopping criteria. Setting this number
up is decided based on the quality of predictions after every training round. It was noticed
that when this number is smaller, the top predicted interesting combinations were nothing
but the most common keywords in the field of Optics. Examples of such common concepts
are ’linear optics’ and ’nonlinear optics’. The same problem occurs when we train the
model for a high number of iterations. We start getting the error due to the common
problem of generalization because the model overfits as these two errors are closely related.
Overfitting occurs when the learned function becomes sensitive to the noise in the sample.
As a result, the function will perform well on the training set but not perform well on other
data. Thus, the more the overfitting, the larger the generalization error ??. During the
training process, the model tries to chase the loss function crazily on the training data,
by tuning the parameters. Now, we keep another set of data as the test set and as we go
on training, we keep a record of the loss function on the test data, and when we see that
there is no improvement on the test set, we stop. This strategy is called early stopping.
Figure 5.4 shows the early stopping checkpoint for our model. The test loss average doesn’t
fluctuate much and remains in the same value range as earlier after this point and so the
training is stopped here instead of using the complete number of set iterations to avoid
overfitting and degradation of the prediction quality due to generalization.
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Table 5.1: The Confusion matrix parameters

5.2 Model performance

Before we proceed on discussing the performance of the model, let us have a brief overview
of some important parameters that are required to measure the same.

5.2.1 The confusion matrix

The Confusion Matrix is a table that gives us an overview of the performance of our model.
This matrix gives us an idea of how accurately the model interprets the data. Therefore, this
matrix is also known as an Error Matrix. This is a contingency table with two dimensions,
’actual’ and ’predicted’ as illustrated in table 5.1. This table captures the True Positives,
True Negatives, False Positives, and False Negatives which are explained below.

True Positives (TP)

This is the total number of correctly labeled positive samples 1. Analogically, in our case, the
number of connected vertex pairs that are predicted as connected and these are connected
in reality.

True Negatives (TN)

This is the total number of correctly labeled negative samples 1. Analogically, in our case,
the number of unconnected vertex pairs that are predicted as unconnected and these are
unconnected in reality.

1Source: https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
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False Positives (FP)

This is the total number of negative samples incorrectly labeled as positive 1. Analogically,
in our case, the number of unconnected vertex pairs that are predicted as connected and
these are unconnected in reality.

False Negatives (FN)

This is the total number of positive samples incorrectly labeled as negative 1. Analogically,
in our case, the number of connected vertex pairs that are predicted as unconnected and
these are connected in reality.

5.2.2 The confusion metrics

In the previous section, we had an overview of the concept of the Confusion Matrix. In this
section, we will have a look at the inferences we can draw from this matrix that directly
point toward the model performance.

True Positive Rate (TPR)

The true positive rate is calculated as the total number of true positives divided by the
sum of the true positives and the false negatives 2. The true positive rate is also known as
the sensitivity or the recall 2.

TPR = TP

TP + FN

False Positive Rate (FPR)

The false positive rate is calculated as the total number of false positives divided by the
sum of the false positives and true negatives 2.

FPR = FP

FP + TN

5.2.3 Area Under the Curve (AUC)

In machine learning, performance measurement is an essential task. AUC is one of the
most important evaluation metrics for a binary classifier to check its performance as it

2Source: https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
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Figure 5.5: Receiver Operating Characteristic (ROC) Curve

represents the measure of separability between two classes. It is also written as AUROC
(Area Under the Receiver Operating Characteristic). Receiver Operating Characteristic
(ROC) is a probability of the chance that a random true element is ranked higher than a
random false one. The ROC curve depicts the rate of true positives concerning the rate
of false positives, therefore highlighting the sensitivity of the classifier model [64]. The
higher the AUC, the better the model is at predicting. The ROC curve is plotted with
TPR against the FPR where TPR is on the Y-axis and FPR is on the X-axis [64]. AUC
measures the entire two-dimensional area underneath the entire ROC curve [64]. Thus,
these metrics are computed based only on two outcomes, a positive or a negative prediction.
The link prediction model workflow discussed in section 5.1.2 also is also trained only on
two possible outcomes - connected or unconnected and this is why we use the AUC to
identify the performance of our model. The ROC curve for the model in this thesis is shown
in figure 5.5. The AUC value is 0.91 for our model which means that there is a 91% chance
that the model ranks a random case of connected nodes higher than an unconnected case.

5.2.4 Results

The output of the trained model is pairs of vertices sorted based on the connection score
coming out of the neural network. The 15 properties extracted for each unconnected concept
pair (discussed in section 5.1.2) are used by the neural network to estimate which pair
of concepts is likely to be connected within 3 years. The first ones in the list have high
chances of connecting in the upcoming years and the last ones have the least chance. The
prediction quality is identified by plotting a ROC curve and then measuring the AUC. We
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discussed ROC and AUC in section 5.2.3. In the ROC plot, The Y - axis shows the True
Positive Rate (TPR). This is the rate of concept pairs that have been correctly identified
to be connected within 3 years. In the ROC plot, the X- axis shows the False Positive
Rate (FPR). This is the rate of the concept pairs that have falsely been predicted to be
connected. A perfect neural network would have a TPR of 1 and an FPR of 0. Thus, the
AUC for a perfect neural network is 1. The AUC can be interpreted as the probability
that the neural network will rank a randomly chosen true instance higher than a randomly
chosen negative instance 3. The computed AUC of the trained model is 0.91 which indicates
that the neural network can learn to predict future research interests in the field of Optics
based on historical information with good accuracy.

Table 5.2 summarizes the most and the least probable predicted future connection. The
highest predicted connection is between the concepts beat note and deep learning. The
concept, beat note has the degree of 649, which means it appears 649 times with other
concepts in different research papers published on arXiv under the category of physics.optics.
The number of neighbors of this concept in the semantic network is 497, which means, you
can reach 497 concepts directly by path of length 1 starting from the node of this concept.
The degree of the concept, deep learning is 2415 and it has 1332 neighbors. These concepts
have a cosine similarity value of 0.092 which is very less indicating that these concepts
do not have significant number of shared neighbors. The predicted connection score for
these two concepts is 1.21 which is the highest among all the score values. This score value
can be greater than or even less than 1 as this is the weighted sum received at the output
neuron of the neural network after the input data undergoes multiple transformations in
the various layers of the neural network. Higher is this number, higher is the chance that
the two involved concepts will form a connection in the future. The highest predicted
connection is between the concepts test setup and cold cesium atom. The two concepts have
the degrees, 64 and 86 respectively. The number of neighbors are 58 and 73 respectively.
The value of cosine similarity is 0. The predicted connection score value for this pair is
-0.15 which is the lowest of the scores of all the pairs.

The important network data of the predicted connections has been summarized in the
tables 5.3, 5.4 and 5.5. C1 stands for one node in the predicted connection and C2 stands for
the second node. These tables have been formulated based on different boundary conditions
for the value of the cosine similarity.

3Source: https://www.hpl.hp.com/techreports/2003/HPL-2003-4.pdf
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Table 5.2: The highest and the lowest predicted connections based on the connection score
value

Table 5.3: Top predicted connections without any filter

Table 5.4: Top predicted connections with a filter of cosine similarity. The cosine similarity
of the predicted connection has to be less than 0.09 in this case.
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Table 5.5: Top predicted connections with a filter of the number of neighbors. The number
of neighbors for both the concepts should be less than 1000 here.

Figure 5.6: Personalised predictions model workflow

5.3 Personalised predictions for a Scientist

Now, it’s time to put the trained model to good use. In the previous section, we saw
the process to develop the model to propose new research topics. However, it would be
interesting if we use this model to suggest interesting research topic combinations based on
the research interests of one particular scientist. We have attempted to tackle this issue
with the help of our trained neural network.

5.3.1 Data preparation and processing

Before we use our trained model, we need the data of which edges are unconnected when
it comes to the Scientist of our interest. The very first element that we need to proceed
further is the papers published by the Scientist. As we already processed multiple papers
earlier from arXiv to extract concepts, we already have a good amount of keywords that
highlight diffrent research directions in the field of Optics. So, now, we don’t need to
constrain ourselves to arXiv to mine the Scientist specific papers. This time, the papers
are extracted manually from Google Scholar. Google Scholar is nothing less than a gold
mine for researchers. It is a freely accessible web search engine that stores the full text or
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Figure 5.7: The idea behind personalized predictions. Concepts in green color are extracted
from the Scientist’s publication and the ones in blue come from the other research articles
published in the field of Optics. The green color edges are the topics that have been
investigated by the Scientist earlier. The ones in red are something which the Scientist
has not tackled together yet and thus, makes it a potential combination for personalized
predictions.

metadata of scholarly literature across multiple disciplines. Released in beta in November
2004, the Google Scholar index includes peer-reviewed online academic journals and books,
conference papers, theses and dissertations, preprints, abstracts, technical reports, and
other scholarly literature, including court opinions and patents 4. This experiment was
performed on the research papers of the Scientist, Prof. Dr. Hanieh Fattahi. So, in total,
we extract 53 papers for our Scientist from the Google Scholar database.

Once we have all the papers at hand, the next step is to look for the concepts from our
list and if it is present in the Scientist’s publication. A total of 278 concepts are extracted.
The next step is to begin the preparation of the combination of potential future research
topics for the Scientist. The first step is pairing every concept from the list we created in
this section with every concept in the list that we created in section 3.1.5. After this, we
end up with a list of around 4.37 million combinations.

5.3.2 Personalised predictions

The complete personalized prediction process workflow is illustrated in figure 5.6. The
semantic network visualization in figure 5.7 illustrates the logic behind making the connec-
tions personalized. It is similar to the generalized prediction process discussed in section
5.1.2. We get personalized predictions using our trained neural network to predict the most

4Source: https://scholar.google.com/intl/us/scholar/help.htmlcover
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(a) (The paper title and abstract shown in this image is from [65].

(b) (The paper title and abstract shown in this image is from [66].

Figure 5.8: Concept extraction from the papers of the chosen Scientist
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Figure 5.9: Insights into the research interests of the Scientist based on the extracted
research material from the Scientist. A darker shade indicates that the chosen Scientist
investigates that particular concept a lot compared to the entire scientific community of
Optics. A lighter shade denotes the opposite.
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Table 5.6: Top personalized predicted connections without any filter

and least probable connections from the data we generated here. Once, we have this list,
we can analyze it by applying several filters like cosine similarity, node degree, or even by
directly querying the data with a particular concept to understand the prediction strength.
The Scientist, thus, in the end, gets all the interesting combined research topics that he/ she
initially might not have thought of. This list can spark some interest among the research
fraternity to investigate new things together and can also trigger collaborations to unravel
the mysteries of Optics. Some interesting suggestions were given by the model we trained
earlier. The results are summarized in the tables 5.6, 5.7 and 5.8. The summary in these
tables is similar to the tables discussed in section 5.2.4 where the data was segregated based
on the cosine similarity value. The only difference here is that the name of the second
concept (C2) comes from the concept list extracted only from the research material of the
chosen Scientist. The first concept (C1) comes from the complete research material on
arXiv published in the field of Optics.
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Table 5.7: Top personalized predicted connections with a filter of cosine similarity. The
cosine similarity of the predicted connection has to be less than 0.09 in this case.

Table 5.8: Top personalized predicted connections with a filter of the number of neighbors.
The number of neighbors for both the concepts should be less than 1000 here.



Chapter 6

Conclusion and Outlook

This thesis aimed at kick-starting the work that utilizes the power of Semantic Networks to
pave the way for generating new, interesting, and surprising research topics in the field of
Optics. By processing published papers in the field of Optics, a dataset of keywords that
occur in the publications in this field was successfully created as a part of this work. This
dataset throws light on various scientific terminologies used in the field of Optics and also
on different subfields of research in Optics. The extracted data was stored in the form of a
semantic network such that the fields that have been investigated together in one article
are connected in the network and the connection has a timestamp that throws light on the
publication date. The developed semantic network has very important information stored
in it that can be accessed to have an overview of the prominent research topics during a
particular period. The neural network proposed in this thesis makes it easier to determine
the dynamics of emerging research topics and to find hidden patterns in the connections in
the past. This neural network was then deployed to predict interesting research directions
for one particular Scientist. The only required input, in the beginning, would be relevant
research papers and then the entire proposed workflow in this thesis can be executed to
process the papers, extract keywords, create the semantic network, train the neural network
and get personalized predictions according to your interest at the end.

The foundation on which this thesis is built is the research papers. As data processing
and concept extraction is a time-consuming process, we have limited ourselves and only
used the papers published on arXiv to propose the idea. Thus, some of the predicted
combinations can be such that these have already been tackled together in one paper earlier
but this paper has been published on other platforms. There are various other platforms
where papers are published in the domain of Optics. If research papers from all the possible
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platforms are collected, converted to a uniform format, and processed, such a tool has the
potential to create wonders in the field of scientific research as our model performs very
well on the arXiv data that we feed to it so it has a great potential to find hidden patterns.

The semantic connection criteria that we have used in this work is the paper publication
date. Future research can focus on other impacting parameters as well, such as the number
of citations, authors, collaborations among scientists, and other relevant factors as required.
The ongoing developments relevant to this can be used to achieve the target. One of
the best examples is OpenAlex, a free and open catalog of the world’s scholarly papers,
researchers, journals, and institutions. This catalog also gives an overview of the way these
factors are connected [67]. Research data can be efficiently managed by tracking citation
impact, spotting promising new research areas, and identifying and promoting work from
underrepresented groups. The more factors are considered, the higher is the possibility
to unravel the information hidden in past research work and guide us to the future. As
we read in the previous chapters, in every single operation, the keywords, which we have
called concepts are required. We have extracted these concepts from the research papers by
deploying multiple natural language processing algorithms considering the scope of the work.
Future research can focus on developing a Machine Learning Model to generate the concept
list itself. Also, if the clusters of concepts in the semantic network are investigated, there
is a possibility that all the clustered concepts point toward a whole new research domain
which would be very interesting to investigate. One important factor to be considered in
future work can be finding the importance and impact of the new connection. As a tool for
high-quality suggestions, the computation of a ’metric-of-success’, for example, estimated
citation numbers of the new link or the rate of citation growth over time can be helpful.
The collected data can be stored using modern Graph Database Algorithms available today
and using these for the storage of research data can only enhance the decision-making
process of the researchers as getting the required information at the right time at high
speed by simply querying these giant graphs is the feature that makes these tools powerful.

If these further improvements fall into place with the help of collaboration between
Optics Researchers and Computer Scientists, the power of the tool developed in this thesis
can be amplified to create wonders in research in the field of Optics.



List of Figures

1.1 Growth in the number of scientists and publications in the field of Optics
during the past century . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The user interface of the GPT 3 tool. Here, an abstract from a scientific text
[4] is entered in order to get the keywords out of it. The words highlighted
in green are the extracted words. It can be seen that some of the important
words like symmetry breaking, dielectric optical resonator, evanescent coupling
are not even extracted. This indicates that we might lose some important
information discussed in the piece of text. . . . . . . . . . . . . . . . . . . 3

2.1 Diagrammatic inner working of SEMNET. Human-generated concept lists
(from Wikipedia and books) are combined with automatically generated lists
(with natural language processing, using RAKE on 100,000 arXiv articles)
to generate a list of quantum physics concepts. Each concept forms a link
in a semantic network. The edges are formed when two concepts coappear
in a title or abstract of any of the 750,000 papers (from arXiv and APS). A
mini-version of SEMNET is shown, using parts of three articles from APS.
Edges carry temporal information of their formation year, which leads to an
evolution of the semantic network SEMNET over time [5]. (Image from [5]). 8

2.2 The semantic network in Biochemistry. The nodes represent the names of
biomolecules. An edge is drawn to connect two biomolecules if these two
have been studied together in one published article (Image from [7]). . . . 10

2.3 Examples of semantic networks . . . . . . . . . . . . . . . . . . . . . . . . 11

65



66 LIST OF FIGURES

2.4 A simple graph of 6 nodes and 7 edges. The vertices are labeled as 1, 2, 3,
4, 5, and 6. Each label is unique so that the labels can be used to refer to
any vertex unambiguously. If there is an edge between vertices i and j, this
connection can be denoted as (i,j). In this way, the complete network can be
specified by giving the number of edges and a list of all the edges. So, the
graph in figure 2.3 has edges, (1,2), (1,5), (2,3), (2,4), (3,4), (3,5), and (3,6). 12

2.5 Number of paths of length 2. Here, nodes 2 and 5 are considered as an
example. These nodes have 2 paths of length 2, which means there are two
possibilities where we need to cross 2 edges to reach from one node to the
other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 A simple graph (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 A general artificial neural network architecture . . . . . . . . . . . . . . . . 16
2.8 Computational model of a feedforward neural network . . . . . . . . . . . . 17
2.9 Computational model of a neuron. This illustrates the way in which inputs

are transformed to predict an output. The illustration is based on the weather
forecasting problem discussed in section 2.3.3. . . . . . . . . . . . . . . . . 19

2.10 The Gradient descent algorithm. The approach here is to change the training
parameters at a suitable learning rate to find the minimum loss point (Image
from [17]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.11 Lemmatizing words using NLTK . . . . . . . . . . . . . . . . . . . . . . . . 22
2.12 Generation of stop words in English language using NLTK . . . . . . . . . 22

3.1 Growth in papers published under the category of Optics . . . . . . . . . . 26
3.2 Paper data Example [27] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Data preprocessing workflow. This block diagram illustrates the steps and

the sequence that is followed to get the research articles, process them and
generate a list of important words that highlight the topic of the article. . . 28

3.4 Workflow of the RAKE Algorithm . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Concept list snapshot. These are some randomly chosen concepts from the

final concept list to give a brief idea of how the list looks like. . . . . . . . 31
3.6 Concept list extraction example (The paper title and abstract shown in this

image is from [28]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Logic behind the semantic network creation (image from [28], [29], [30], [31]) 33
3.8 Growth in the co-occurrence of concepts from 1995 to 2021 . . . . . . . . . 35



LIST OF FIGURES 67

4.1 Plot of the evolving concepts [period = 5 Years] . . . . . . . . . . . . . . . 38
4.2 Plot of the evolving concepts [period = 3 Years] . . . . . . . . . . . . . . . 44
4.3 Plot of the popular concepts [period = 1 Year] . . . . . . . . . . . . . . . . 45

5.1 Neural network layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Sequence of the layers in the network used to build the link prediction model.

For better visualization to give an overview of the interconnections, the
number of neurons in each layer has been reduced. In the real network,
the first, second, third and fourth layers have 15, 100, 100 and 10 neurons
respectively. The fifth layer that where we receive the output as a prediction
connection score (discussed in section 5.2.4), has one neuron. This plot is
made using the NN SVG tool [63] . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Link prediction model workflow . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Early stopping checkpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5 Receiver Operating Characteristic (ROC) Curve . . . . . . . . . . . . . . . 54
5.6 Personalised predictions model workflow . . . . . . . . . . . . . . . . . . . 57
5.7 The idea behind personalized predictions. Concepts in green color are

extracted from the Scientist’s publication and the ones in blue come from
the other research articles published in the field of Optics. The green color
edges are the topics that have been investigated by the Scientist earlier. The
ones in red are something which the Scientist has not tackled together yet
and thus, makes it a potential combination for personalized predictions. . . 58

5.8 Concept extraction from the papers of the chosen Scientist . . . . . . . . . 59
5.9 Insights into the research interests of the Scientist based on the extracted

research material from the Scientist. A darker shade indicates that the chosen
Scientist investigates that particular concept a lot compared to the entire
scientific community of Optics. A lighter shade denotes the opposite. . . . 60



68 LIST OF FIGURES



List of Tables

3.1 Word frequency. The number corresponding to every word in this table
indicates the number of times that particular word appears in the piece of
text that is being processed. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Word co-occurrence count. The co-occurrence count is 1 if we pair every
word with itself. When a word is paired with other words in a sentence and
if these words appear next to each other, the count for this pair is 1. In this
case, the words, ’deep’ and ’learning’ appear one after the other in the text
and thus, both of these have a co-occurrence count of 1 when paired with
each other. This is important to extract ’deep learning’ as one keyword and
not separately as two keywords, ’deep’ and ’learning’. . . . . . . . . . . . . 30

3.3 Word scores. This number gives an overview of every word’s appearance
with other words in the text. This gives an idea of the word quality. A higher
number here means that the particular word appears with many other words
and is a word of high importance. . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Scores of candidate keywords. This number indicates the quality of the whole
keyword. The higher the score, the more important is the keyword to help
throw light on the gist of the text. . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Node and edge number for the networks shown in figure 3.8 . . . . . . . . 34

5.1 The Confusion matrix parameters . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 The highest and the lowest predicted connections based on the connection
score value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Top predicted connections without any filter . . . . . . . . . . . . . . . . . 56

5.4 Top predicted connections with a filter of cosine similarity. The cosine
similarity of the predicted connection has to be less than 0.09 in this case. 56

69



70 LIST OF TABLES

5.5 Top predicted connections with a filter of the number of neighbors. The
number of neighbors for both the concepts should be less than 1000 here. . 57

5.6 Top personalized predicted connections without any filter . . . . . . . . . . 61
5.7 Top personalized predicted connections with a filter of cosine similarity. The

cosine similarity of the predicted connection has to be less than 0.09 in this
case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.8 Top personalized predicted connections with a filter of the number of neigh-
bors. The number of neighbors for both the concepts should be less than
1000 here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



Bibliography

[1] arXiv Annual Update, January 2019. url: https://arxiv.org/about/reports/
2019_update (cited on p. 1).

[2] arXiv Annual Update, January 2020. url: https://arxiv.org/about/reports/
2020_update (cited on p. 1).

[3] arXiv Annual Report 2021. url: https://static.arxiv.org/static/arxiv.
marxdown/0.1/about/reports/2021_arXiv_annual_report.pdf (cited on p. 1).

[4] Jonathan M. Silver and Pascal Del’Haye. “Generalized theory of optical resonator
and waveguide modes and their linear and Kerr nonlinear coupling”. In: Phys. Rev.
A 105, 023517 (Feb. 2022). url: https://journals.aps.org/pra/abstract/10.
1103/PhysRevA.105.023517 (cited on p. 3).

[5] Mario Krenn and Anton Zeilinger. “Predicting research trends with semantic and
neural networks with an application in quantum physics”. In: The Proceedings of the
National Academy of Sciences (PNAS) (Jan. 2020). url: https://www.pnas.org/
doi/full/10.1073/pnas.1914370116 (cited on pp. 2, 5, 7–9, 25).

[6] Mario Krenn, Lorenzo Buffoni, Bruno Coutinho, Sagi Eppel, Jacob Gates Foster,
Andrew Gritsevskiy, Harlin Lee, Yichao Lu, Joao P. Moutinho, Nima Sanjabi, Rishi
Sonthalia, Ngoc Mai Tran, Francisco Valente, Yangxinyu Xie, Rose Yu, and Michael
Kopp. Predicting the Future of AI with AI: High-Quality link prediction in an expo-
nentially growing knowledge network. Version 1. Sept. 2022. url: https://arxiv.
org/abs/2210.00881 (cited on pp. 2, 9, 25).

[7] Andrey Rzhetskya, Jacob G. Fosterd, Ian T. Fosterb, and James A. Evansb. “Choos-
ing experiments to accelerate collective discovery”. In: Proceedings of the National
Academy of Sciences (Nov. 2015). url: https://www.pnas.org/doi/full/10.1073/
pnas.1509757112 (cited on pp. 2, 7, 10).

71

https://arxiv.org/about/reports/2019_update
https://arxiv.org/about/reports/2019_update
https://arxiv.org/about/reports/2020_update
https://arxiv.org/about/reports/2020_update
https://static.arxiv.org/static/arxiv.marxdown/0.1/about/reports/2021_arXiv_annual_report.pdf
https://static.arxiv.org/static/arxiv.marxdown/0.1/about/reports/2021_arXiv_annual_report.pdf
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.105.023517
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.105.023517
https://www.pnas.org/doi/full/10.1073/pnas.1914370116
https://www.pnas.org/doi/full/10.1073/pnas.1914370116
https://arxiv.org/abs/2210.00881
https://arxiv.org/abs/2210.00881
https://www.pnas.org/doi/full/10.1073/pnas.1509757112
https://www.pnas.org/doi/full/10.1073/pnas.1509757112


72 BIBLIOGRAPHY

[8] Dashun Wang and Albert-László Barabási. The Science of Science. Cambridge Uni-
versity Press, 2021. doi: 10.1017/9781108610834 (cited on pp. 4, 5).

[9] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. “Language Models are Few-Shot Learners”. Version 4. In: (July 2020). url:
https://arxiv.org/abs/2005.14165 (cited on p. 4).

[10] P. He, B. Akhgar, and H. Arabnia. “Emerging Trends in ICT Security (pages 455-
467)”. In: Sciencedirect (2014). url: https://www.sciencedirect.com/science/
article/pii/B978012411474600027X (cited on p. 9).

[11] Björn Titz, Seesandra V. Rajagopala, Johannes Goll, Roman Häuser, Matthew T.
McKevitt, Timothy Palzkill, and Peter Uetz. “The Binary Protein Interactome of
Treponema pallidum The Syphilis Spirochete”. In: Plos One (May 2008). url: https:
//journals.plos.org/plosone/article?id=10.1371/journal.pone.0002292
(cited on p. 11).

[12] Giacomo Vaccario, Luca Verginer, and Frank Schweitzer. “Reproducing scientists’
mobility: A data-driven model”. In: Scientific Reports (May 2021). url: https:
//www.nature.com/articles/s41598-021-90281-9 (cited on p. 11).

[13] M. E. J. Newman. Networks: an introduction. Oxford; New York: Oxford University
Press, Mar. 2010. url: https://academic.oup.com/book/27303 (cited on pp. 10,
12–14).

[14] Kevin Gurney. An introduction to neural networks. Taylor Francis, Inc., Mar. 1997.
url: https://dl.acm.org/doi/10.5555/523781 (cited on pp. 15, 16).

[15] Juergen Schmidhuber. “Deep Learning in Neural Networks: An Overview”. In:
Neural Networks, Vol 61, pp 85-117, Jan 2015 (Jan. 2015). url: https://www.
sciencedirect . com / science / article / abs / pii / S0893608014002135 ? via %
3Dihub (cited on p. 15).

[16] Vinod Nair and Geofrey E. Hinton. “Rectified Linear Units Improve Restricted
Boltzmann Machines”. In: Association for Computing Machinery (June 2010). url:
https://dl.acm.org/doi/10.5555/3104322.3104425 (cited on p. 18).

https://doi.org/10.1017/9781108610834
https://arxiv.org/abs/2005.14165
https://www.sciencedirect.com/science/article/pii/B978012411474600027X
https://www.sciencedirect.com/science/article/pii/B978012411474600027X
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002292
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002292
https://www.nature.com/articles/s41598-021-90281-9
https://www.nature.com/articles/s41598-021-90281-9
https://academic.oup.com/book/27303
https://dl.acm.org/doi/10.5555/523781
https://www.sciencedirect.com/science/article/abs/pii/S0893608014002135?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0893608014002135?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0893608014002135?via%3Dihub
https://dl.acm.org/doi/10.5555/3104322.3104425


BIBLIOGRAPHY 73

[17] Brad Boehmke and Brandon M. Greenwell. Hands-On Machine Learning with R.
Chapman Hall, Nov. 2019. url: https://www.routledge.com/Hands-On-Machine-
Learning-with-R/Boehmke-Greenwell/p/book/9781138495685 (cited on p. 20).

[18] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep Learning”. In: Nature (May
2015). url: https://www.nature.com/articles/nature14539 (cited on p. 20).

[19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
PyTorch: An Imperative Style, High-Performance Deep Learning Library. Version 1.
Dec. 2019. url: https://arxiv.org/abs/1912.01703 (cited on p. 21).

[20] Mo Patel. “When two trends fuse: PyTorch and recommender systems”. In: O’Reilly
Media (Dec. 2017). url: https://www.oreilly.com/content/when-two-trends-
fuse-pytorch-and-recommender-systems/ (cited on p. 21).

[21] Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python.
Oxford; New York: O’Reilly Media, 2009. url: https://www.nltk.org/book/ (cited
on p. 22).

[22] Stuart Rose, Dave Engel, Nick Cramer, and Wendy Cowley. “Automatic Keyword
Extraction from Individual Documents”. In: Wiley Online Library (Mar. 2010). url:
https://onlinelibrary.wiley.com/doi/10.1002/9780470689646.ch1 (cited on
pp. 22, 29–31).

[23] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli
Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E. Oliphant. “Array programming with NumPy”. In:
Nature 585.7825 (Sept. 2020), pp. 357–362. url: https://doi.org/10.1038/s41586-
020-2649-2 (cited on p. 23).

[24] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C

https://www.routledge.com/Hands-On-Machine-Learning-with-R/Boehmke-Greenwell/p/book/9781138495685
https://www.routledge.com/Hands-On-Machine-Learning-with-R/Boehmke-Greenwell/p/book/9781138495685
https://www.nature.com/articles/nature14539
https://arxiv.org/abs/1912.01703
https://www.oreilly.com/content/when-two-trends-fuse-pytorch-and-recommender-systems/
https://www.oreilly.com/content/when-two-trends-fuse-pytorch-and-recommender-systems/
https://www.nltk.org/book/
https://onlinelibrary.wiley.com/doi/10.1002/9780470689646.ch1
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2


74 BIBLIOGRAPHY

J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and
SciPy 1.0 Contributors. “SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-019-
0686-2 (cited on p. 23).

[25] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. “Gephi: An Open
Source Software for Exploring and Manipulating Networks”. In: International AAAI
Conference on Weblogs and Social Media (Mar. 2009). url: https://ojs.aaai.org/
index.php/ICWSM/article/view/13937/13786 (cited on pp. 23, 36).

[26] Paul Ginsparg. “Lessons from arXiv’s 30 years of information sharing”. In: Nature
Reviews Physics (Aug. 2021). url: https://www.nature.com/articles/s42254-
021-00360-z (cited on pp. 25, 26).

[27] Xuemei Gu, Mario Krenn, Manuel Erhard, and Anton Zeilinger. “Gouy Phase Radial
Mode Sorter for Light: Concepts and Experiments”. Version 1. In: Physical Review
Letters (Dec. 2017). url: https://journals.aps.org/prl/abstract/10.1103/
PhysRevLett.120.103601 (cited on p. 27).

[28] Mario Krenn, Robert Fickler, Matthias Fink, Johannes Handsteiner, Mehul Malik,
Thomas Scheidl, Rupert Ursin, and Anton Zeilinger. “Communication with spatially
modulated Light through turbulent Air across Vienna”. In: New Journal of Physics
(Nov. 2014). url: https://iopscience.iop.org/article/10.1088/1367-2630/
16/11/113028 (cited on pp. 32, 33).

[29] Mario Krenn, Marcus Huber, Robert Fickler, Radek Lapkiewicz, Sven Ramelow,
and Anton Zeilinger. “Generation and Confirmation of a (100x100)-dimensional
entangled Quantum System”. Version 1. In: The Proceedings of the National Academy
of Sciences (PNAS) (June 2013). url: https://www.pnas.org/doi/full/10.1073/
pnas.1402365111 (cited on p. 33).

[30] Mario Krenn, Johannes Handsteiner, Matthias Fink, Robert Fickler, Rupert Ursin,
Mehul Malik, and Anton Zeilinger. “Twisted Light Transmission over 143 kilometers”.
In: The Proceedings of the National Academy of Sciences (PNAS) (June 2016). url:
https://www.pnas.org/doi/full/10.1073/pnas.1612023113 (cited on p. 33).

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://ojs.aaai.org/index.php/ICWSM/article/view/13937/13786
https://ojs.aaai.org/index.php/ICWSM/article/view/13937/13786
https://www.nature.com/articles/s42254-021-00360-z
https://www.nature.com/articles/s42254-021-00360-z
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.103601
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.103601
https://iopscience.iop.org/article/10.1088/1367-2630/16/11/113028
https://iopscience.iop.org/article/10.1088/1367-2630/16/11/113028
https://www.pnas.org/doi/full/10.1073/pnas.1402365111
https://www.pnas.org/doi/full/10.1073/pnas.1402365111
https://www.pnas.org/doi/full/10.1073/pnas.1612023113


BIBLIOGRAPHY 75

[31] Florian Schlederer, Mario Krenn, Robert Fickler, Mehul Malik, and Anton Zeilinger.
“Cyclic transformation of orbital angular momentum modes”. Version 1. In: New
Journal of Physics (Apr. 2016). url: https://iopscience.iop.org/article/10.
1088/1367-2630/18/4/043019 (cited on p. 33).

[32] Mathieu Jacomy, Tommaso Venturini, Sebastien Heymann, and Mathieu Bastian.
“ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization
Designed for the Gephi Software”. In: PLOS ONE (June 2014). url: https://
journals.plos.org/plosone/article?id=10.1371/journal.pone.0098679
(cited on p. 36).

[33] Abir Bandyopadhyay and Jagdish Rai. “Squeezing in the interaction of radiation
with two-level atoms”. Version 2. In: International Symposium on Atomic Coherence
and Inversion-less Amplification (ISAMP, Changchun, China) (Oct. 1995). url:
https://arxiv.org/abs/atom-ph/9509005 (cited on p. 38).

[34] Valery Telnov. “Laser cooling of electron beams for linear colliders”. Version 2. In:
Phys.Rev.Lett. 78 (1997) 4757-4760; Erratum-ibid. 80 (1998) 2747 (Oct. 1996). url:
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.78.4757
(cited on p. 38).

[35] Christopher S. Baird. Electromagnetic field. Mc Graw Hill, Aug. 2021. url: https:
//www.accessscience.com/content/article/a222300 (cited on p. 39).

[36] Z. S. Bassi and A. LeClair. “A one-dimensional model for n-level atoms coupled to an
electromagnetic field”. Version 1. In: Journal of Mathematical Physics (Mar. 1997).
url: https://aip.scitation.org/doi/10.1063/1.532922 (cited on p. 39).

[37] Daniel Poitras and Ludvik Martinu. “A simple method for the determination of slowly
varying refractive index profiles from in situ spectrophotometric measurements”.
Version 1. In: Optica Publishing Group (formerly OSA) (Apr. 1998). url: https:
//opg.optica.org/ao/abstract.cfm?uri=ao-37-19-4160 (cited on p. 39).

[38] G. Vacca, R. D. Morgan, and R. B. Laughlin. “Differential light scattering: probing
the sonoluminescence collapse”. Version 1. In: J Phys. Rev. E 60 (6), R6303-6306
(Dec. 1999). url: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.
60.R6303 (cited on p. 39).

[39] Valery Telnov. “Photon collider at TESLA”. Version 1. In: Nucl.Instrum.Meth.A472:43-
60,2001 (Oct. 2000). url: https://doi.org/10.1016/S0168-9002(01)01161-5
(cited on p. 39).

https://iopscience.iop.org/article/10.1088/1367-2630/18/4/043019
https://iopscience.iop.org/article/10.1088/1367-2630/18/4/043019
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098679
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098679
https://arxiv.org/abs/atom-ph/9509005
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.78.4757
https://www.accessscience.com/content/article/a222300
https://www.accessscience.com/content/article/a222300
https://aip.scitation.org/doi/10.1063/1.532922
https://opg.optica.org/ao/abstract.cfm?uri=ao-37-19-4160
https://opg.optica.org/ao/abstract.cfm?uri=ao-37-19-4160
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.60.R6303
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.60.R6303
https://doi.org/10.1016/S0168-9002(01)01161-5


76 BIBLIOGRAPHY

[40] Steven W. Ellingson. Electromagnetics, Volume 2. Virginia Tech, Jan. 2020. url:
https://vtechworks.lib.vt.edu/handle/10919/93253 (cited on p. 40).

[41] A. I. A. Adewole. Light Propagation For Accelerated Observers. Version 3. Oct. 2001.
url: https://arxiv.org/abs/physics/0104069 (cited on p. 40).

[42] Gennady Shvets. Photonic Approach to Making a Left-Handed Material. Version 3.
Oct. 2002. url: https://arxiv.org/abs/physics/0206004 (cited on p. 40).

[43] David L. Andrews, Luciana C. Davila Romero, and Mohamed Babiker. “Molecular
chirality and the orbital angular momentum of light”. Version 1. In: Optics Commu-
nications (May 2003). url: https://arxiv.org/abs/physics/0305002 (cited on
p. 40).

[44] Cyriaque Genet, Martin P. van Exter, and J.P. Woerdman. “Fano-type interpretation
of red shifts and red tails in hole array transmission spectra”. Version 1. In: Optics
Communications (Jan. 2004). url: https://arxiv.org/abs/physics/0401054
(cited on p. 40).

[45] S. Burger, L. Zschiedrich, R. Klose, A. Schädle, F. Schmidt, C. Enkrich, S. Linden,
M. Wegener, and C. M. Soukoulis. “Numerical Investigation of Light Scattering off
Split-Ring Resonators”. Version 1. In: Proc. SPIE Vol. 5955 (2005) 595503 (Oct.
2005). url: https://www.spiedigitallibrary.org/conference-proceedings-
of-spie/5955/1/Numerical-investigation-of-light-scattering-off-split-
ring-resonators/10.1117/12.622184.short (cited on p. 41).

[46] Maha Intakhab Alam, Muhammad Amin, and Irfan Majid. “The Physics of Invisibility
Cloak”. In: 2020 17th International Bhurban Conference on Applied Sciences and
Technology (IBCAST) (2020). url: https://ieeexplore.ieee.org/document/
9044535 (cited on p. 41).

[47] D. Schurig, J.B. Pendry, and D.R. Smith. “Calculation of material properties and ray
tracing in transformation media”. Version 1. In: Optica Publishing Group (formerly
OSA) (July 2006). url: https://opg.optica.org/oe/fulltext.cfm?uri=oe-14-
21-9794&id=116380 (cited on p. 41).

[48] Marco Rahm, David Schurig, Daniel A. Roberts, Steven A. Cummer, David R. Smith,
and John B. Pendry. “Design of Electromagnetic Cloaks and Concentrators Using
Form-Invariant Coordinate Transformations of Maxwell’s Equations”. Version 1.
In: Photon. Nanostruct.: Fundam. Applic. 6, 87 (2008) (June 2007). url: https:
//doi.org/10.1016/j.photonics.2007.07.013 (cited on p. 41).

https://vtechworks.lib.vt.edu/handle/10919/93253
https://arxiv.org/abs/physics/0104069
https://arxiv.org/abs/physics/0206004
https://arxiv.org/abs/physics/0305002
https://arxiv.org/abs/physics/0401054
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5955/1/Numerical-investigation-of-light-scattering-off-split-ring-resonators/10.1117/12.622184.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5955/1/Numerical-investigation-of-light-scattering-off-split-ring-resonators/10.1117/12.622184.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5955/1/Numerical-investigation-of-light-scattering-off-split-ring-resonators/10.1117/12.622184.short
https://ieeexplore.ieee.org/document/9044535
https://ieeexplore.ieee.org/document/9044535
https://opg.optica.org/oe/fulltext.cfm?uri=oe-14-21-9794&id=116380
https://opg.optica.org/oe/fulltext.cfm?uri=oe-14-21-9794&id=116380
https://doi.org/10.1016/j.photonics.2007.07.013
https://doi.org/10.1016/j.photonics.2007.07.013


BIBLIOGRAPHY 77

[49] Jasgurpreet S. Chohan and Rupinder Singh. Encyclopedia of Materials: Plastics and
Polymers (Chapter: Thermosetting Polymer Application as Meta Materials. Elsevier
Inc., 2022. url: https://doi.org/10.1016/B978-0-12-820352-1.00159-0 (cited
on p. 41).

[50] E. Plum, V. A. Fedotov, and N. I. Zheludev. “Optical Activity of Planar Achiral
Metamaterials”. Version 1. In: Phys. Rev. Lett., vol. 102, page 113902 (2009) (July
2008). url: https://aip.scitation.org/doi/10.1063/1.3021082 (cited on
p. 41).

[51] Willem L. Vos, A. Femius Koenderink, and Ivan S. Nikolaev. “Orientation-dependent
spontaneous emission rates of a two-level quantum emitter in any nanophotonic
environment”. Version 2. In: Phys. Rev. A 80, 053802 (2009) (Dec. 2009). url:
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.80.053802 (cited
on p. 42).

[52] Lingzhi Li, Yuan Cao, Yanyan Zhi, Jiejun Zhang, Yuting Zou, Xinhuan Feng, Bai-Ou
Guan, and Jianping Yao. “Polarimetric parity-time symmetry in a photonic system”.
In: Light: Science Applications (LSA) (Sept. 2020). url: https://www.nature.com/
articles/s41377-020-00407-3 (cited on p. 42).

[53] Andrey A. Sukhorukov, Zhiyong Xu, and Yuri S. Kivshar. “Nonlinear suppression
of time-reversals in PT-symmetric optical couplers”. Version 1. In: Phys. Rev. A 82,
043818 (Oct. 2010). url: https://journals.aps.org/pra/abstract/10.1103/
PhysRevA.82.043818 (cited on p. 42).

[54] Nardeep Kumar, Brian A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione,
and Hui Zhao. “Spatially resolved femtosecond pump-probe study of topological
insulator Bi2Se3”. Version 1. In: Phys. Rev. B 83, 235306 (2011) (Apr. 2011). url:
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.83.235306 (cited
on p. 42).

[55] Paloma A. Huidobro, Alexey Y. Nikitin, Carlos González-Ballestero, Luis Martín-
Moreno, and Francisco J. García-Vidal. “Superradiance mediated by Graphene Surface
Plasmons”. Version 1. In: Phys. Rev. B 85, 155438 (Jan. 2012). url: https://
journals.aps.org/prb/abstract/10.1103/PhysRevB.85.155438 (cited on p. 42).

[56] Shuichi Murakami. “Two-dimensional topological insulators and their edge states”.
In: Journal of Physics: Conference Series and International Symposium Nanoscience
and Quantum Physics 2011“(nanoPHYS’11) 26–28 January 2011, Minato-ku, Tokyo,

https://doi.org/10.1016/B978-0-12-820352-1.00159-0
https://aip.scitation.org/doi/10.1063/1.3021082
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.80.053802
https://www.nature.com/articles/s41377-020-00407-3
https://www.nature.com/articles/s41377-020-00407-3
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.82.043818
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.82.043818
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.83.235306
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.85.155438
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.85.155438


78 BIBLIOGRAPHY

Japan (2011). url: https :/ / iopscience. iop .org / article/ 10 .1088 / 1742-
6596/302/1/012019 (cited on p. 43).

[57] S. Mittal M. Hafezi, A. Migdall J. Fan, and J. Taylor. “Imaging topological edge states
in silicon photonics”. Version 1. In: Nature Photonics 7, 1001 (2013) (v2 extended
version) (Feb. 2013). url: https://www.nature.com/articles/nphoton.2013.274
(cited on p. 43).

[58] G. Mazzamuto, A. Tabani, S. Pazzagli, S. Rizvi, A. Reserbat-Plantey, K. Schädler,
G. Navickaité, L. Gaudreau, F. S. Cataliotti, F. Koppens, and C. Toninelli. “Single-
molecule study for a graphene-based nano-position sensor”. In: New Journal of Physics,
Volume 16 (July 2014). url: https://iopscience.iop.org/article/10.1088/
1367-2630/16/11/113007 (cited on p. 43).

[59] Bo Meng, Matthew Singleton, Johannes Hillbrand, Martin Franckié, Mattias Beck,
and Jérôme Faist. “Dissipative Kerr solitons in semiconductor ring lasers”. In: Nature
Photonics (Dec. 2021). url: https://www.nature.com/articles/s41566-021-
00927-3 (cited on p. 43).

[60] Tobias Herr, Michael L. Gorodetsky, and Tobias J. Kippenberg. Dissipative Kerr
solitons in optical microresonators. Version 1. Aug. 2015. url: https://arxiv.org/
abs/1508.04989 (cited on p. 43).

[61] Yichen Shen, Nicholas C. Harris, Scott Skirlo, Mihika Prabhu, Tom Baehr-Jones,
Michael Hochberg, Xin Sun, Shijie Zhao, Hugo Larochelle, Dirk Englund, and Marin
Soljacic. “Deep Learning with Coherent Nanophotonic Circuits”. Version 1. In: Nature
Photonics (Oct. 2016). url: https://www.nature.com/articles/nphoton.2017.93
(cited on p. 43).

[62] Myoung-Gyun Suh and Kerry Vahala. “Soliton Microcomb Range Measurement”.
Version 3. In: Science 23 Feb 2018: Vol. 359, Issue 6378, pp. 884-887 (June 2017).
url: https://www.science.org/doi/10.1126/science.aao1968 (cited on p. 44).

[63] Alexander LeNail. “NN-SVG: Publication-Ready Neural Network Architecture Schemat-
ics”. In: The Journal of Open Source Software (Jan. 2019). url: https://joss.
theoj.org/papers/10.21105/joss.00747 (cited on p. 49).

[64] Victor Dey. Understanding the AUC-ROC Curve in Machine Learning Classification.
Sept. 2021. url: https://analyticsindiamag.com/understanding-the-auc-roc-
curve-in-machine-learning-classification/ (cited on p. 54).

https://iopscience.iop.org/article/10.1088/1742-6596/302/1/012019
https://iopscience.iop.org/article/10.1088/1742-6596/302/1/012019
https://www.nature.com/articles/nphoton.2013.274
https://iopscience.iop.org/article/10.1088/1367-2630/16/11/113007
https://iopscience.iop.org/article/10.1088/1367-2630/16/11/113007
https://www.nature.com/articles/s41566-021-00927-3
https://www.nature.com/articles/s41566-021-00927-3
https://arxiv.org/abs/1508.04989
https://arxiv.org/abs/1508.04989
https://www.nature.com/articles/nphoton.2017.93
https://www.science.org/doi/10.1126/science.aao1968
https://joss.theoj.org/papers/10.21105/joss.00747
https://joss.theoj.org/papers/10.21105/joss.00747
https://analyticsindiamag.com/understanding-the-auc-roc-curve-in-machine-learning-classification/
https://analyticsindiamag.com/understanding-the-auc-roc-curve-in-machine-learning-classification/


BIBLIOGRAPHY 79

[65] Ayman Alismail, Haochuan Wang, Gaia Barbiero, Najd Altwaijry, Syed Ali Hussain,
Volodymyr Pervak, Wolfgang Schweinberger, Abdallah M Azzeer, Ferenc Krausz, and
Hanieh Fattahi. “Multi-octave, CEP-stable source for high-energy field synthesis”.
In: Science Advances (Feb. 2020). url: https://www.science.org/doi/full/10.
1126/sciadv.aax3408 (cited on p. 59).

[66] Ayman Alismail, Haochuan Wang, Jonathan Brons, and Hanieh Fattahi. “20 mJ,
1 ps Yb: YAG Thin-disk Regenerative Amplifier”. In: JoVE (Journal of Visualized
Experiments) (July 2017). url: https://www.jove.com/t/55717/20-mj-1-ps-
ybyag-thin-disk-regenerative-amplifier (cited on p. 59).

[67] Jason Priem, Heather Piwowar, and Richard Orr. OpenAlex: A fully-open index of
scholarly works, authors, venues, institutions, and concepts. Version 2. June 2022.
url: https://arxiv.org/abs/2205.01833 (cited on p. 64).

https://www.science.org/doi/full/10.1126/sciadv.aax3408
https://www.science.org/doi/full/10.1126/sciadv.aax3408
https://www.jove.com/t/55717/20-mj-1-ps-ybyag-thin-disk-regenerative-amplifier
https://www.jove.com/t/55717/20-mj-1-ps-ybyag-thin-disk-regenerative-amplifier
https://arxiv.org/abs/2205.01833

	1 Introduction
	1.1 Accelerated growth in scientific publications
	1.2 The idea of recommender systems
	1.3 Generative models based on text data
	1.4 Motivation and goal of the thesis

	2 Background
	2.1 Related work
	2.2 Network theory
	2.2.1 Semantic networks
	2.2.2 Mathematics of networks

	2.3 Artificial neural networks
	2.3.1 What is an artificial neural network?
	2.3.2 Feedforward neural networks
	2.3.3 Training a feedforward neural network

	2.4 Computation tools

	3 Creation of the semantic network
	3.1 The dataset
	3.1.1 Data source (arXiv)
	3.1.2 Source data structure
	3.1.3 Data preprocessing
	3.1.4 Keyword extraction
	3.1.5 Final concept list
	3.1.6 Further analysis

	3.2 Creation of the semantic network
	3.2.1 Nodes of the semantic network of Optics
	3.2.2 Edges of the semantic network of Optics
	3.2.3 An attempt at synonym detection
	3.2.4 Visualizing the semantic network


	4 The evolution of concepts in Optics
	4.1 Data analysis of popular concepts
	4.1.1 Concepts evolved over 5 years
	4.1.2 Concepts evolved over 3 years
	4.1.3 Popular concept over 1 year


	5 Prediction of future research trends
	5.1 The model
	5.1.1 The architecture
	5.1.2 Link prediction model workflow

	5.2 Model performance
	5.2.1 The confusion matrix
	5.2.2 The confusion metrics
	5.2.3 Area Under the Curve (AUC)
	5.2.4 Results

	5.3 Personalised predictions for a Scientist
	5.3.1 Data preparation and processing
	5.3.2 Personalised predictions


	6 Conclusion and Outlook
	List of Figures
	List of Tables
	Bibliography

