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I

Can you give me
an experiment for
a maximally
entangled state?



Abstract II

Abstract

In the following bachelor thesis, an existing artificial intelligence (AI) algo-
rithm for the design of quantum optical experiments is extended. Instead of
optimizing the count rate and state fidelity, an average over the purity of the
subsystem served as the loss function. For a given system of N photons of
different dimensionality di, one could thus specify the maximum possible en-
tangled states for a given experimental setup. As a result, some experimental
realizations of k uniform states and AMEs known from the literature could be
found. This confirmed the functionality of the proposed algorithm and leaves
open further investigations on higher dimensional and inhomogeneous sys-
tems.
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1 Introduction

At least since the Nobel Prize in Physics 1 was awarded to Serge Haroche and David
Wineland in 2012, public attention has turned to the field of quantum information(Union,
2021)(Union, 2019). The experimental methods developed in the process laid the foun-
dation for many applications of quantum information theory. A well-known example is
the quantum computer, which has the potential to revolutionize computing by making
certain types of classically intractable problems solvable (Shor, 1997). Exciting exam-
ples can also be cited in quantum communication. Preventing information from being
leaked to an illegitimate user is one of the most important issues today. Superdense
coding (Bennett & Wiesner, 1992a), for example, enables secure communication and
has already been implemented experimentally (Mattle et al., 1996). Bits are the logical
states that classical information theory is based on. Much like that, quantum mechani-
cal states form the basis of quantum information theory. Nevertheless, the creation of
these states poses great challenges to scientists. The generation by photon source and
linear components, for example phase shifters and beam splitters, is a frequently used
approach. Even for experts it is sometimes not possible to derive a corresponding ex-
perimental setup. In recent years there have been some machine learning approaches
that have tried to solve this problem, for example, the first algorithm capable of de-
signing experiments - over ten of which have already been implemented, can be found
in (Krenn et al., 2016). However, many of the approaches have drawbacks due to the
complexity of the problem. One of the more successful graph theory based approaches
called THESEUS was presented by (Krenn et al., 2021). THESEUS can be described
as an automated design algorithm for quantum optics experimental setups. Thereby,
THESEUS initialed the development from a non-transparent system towards an inter-
pretable and explainable artificial intelligence, as the resulting graphs can be directly
implemented by scientists in an experimental setup. Furthermore the graph represen-
tation allows for interpretation and generalization of the results. Previous efforts have
been directed optimizing the fidelity of the created state with regard to a given target
state. In the following, we will discuss how to extend the existing approach of THESEUS

to search not only for states, but also for certain properties of states. To make it more
concrete, the following question can be formulated. What is the maximally entangled
state that can be produced with a given set of experimental constraints (linear optics,
N photons of dimensionality di) and how does the corresponding experiment look like?
Answering the first question requires an applicable measure for entanglement of multi-
particle quantum systems.

1 see https://www.nobelprize.org/prizes/physics/2012/press-release/ for more details

https://www.nobelprize.org/prizes/physics/2012/press-release/
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2 Theory

2.1 Quantum States

For a basic explanation of quantum information theory, it is best to start with the clas-
sical notion of the bit. From this, a bridge can be built to quantum information theory.
In digital systems, a bit can take either zero or one. An experimental realization is
very easy to achieve here. For example, with different voltage levels, positive voltage
corresponds to one and negtive voltage to zero. The counterpart to the bit in quantum
information theory is the so-called qubit. A qubit is a quantum system with two states,
for example a physical realization would be the spin of an electron, which is either di-
rected upwards or downwards in a given reference frame, or one uses a photon, which
has a vertical or a horizontal polarization. Mathematically one can make use of Hilbert
space properties with basis |0⟩ and |1⟩, then a qubit can be written as (Schumacher,
1995)

Definition 2.1.1 (Qubit).

|Φ⟩ = α |0⟩+ β |1⟩ |α|2 + |β|2 = 1, (2.1)

where α, β ∈ C. From this definition the difference between classical and quantum
systems can already be guessed. While a bit is always in one of the two states, a
qubit can be in a superposition of both states. It is also possible to describe systems
containing n qubits. Here, the total Hilbert space H = H1 ⊗ · · · ⊗ Hn is the tensor
product of the single Hilbert spaces for each qubit. One example is the generalized
GHZ state, studied by (Greenberger et al., 2007)

|GHZ⟩ = 1√
2
(|0⟩ ⊗ · · · ⊗ |0⟩+ |1⟩ ⊗ · · · ⊗ |1⟩ .

For a system of two qubits, there are four basis states. With the usual notation, the Bell
states ei are among the most used basis states in quantum information science.

|e1⟩ =
1√
2
(|0102⟩+ |1112⟩)

|e2⟩ =
1√
2
(|0102⟩ − |1112⟩)

|e3⟩ =
1√
2
(|0112⟩+ |1102⟩)

|e4⟩ =
1√
2
(|0112⟩ − |1102⟩)

(2.2)

Consider a quantum mechanical measurement with operator Ω1 = Ω⊗ I2 acting on the
first qubit and Ω |0⟩ = λ |0⟩. Where λ ∈ R is the associated eigenvalue and I2 is the
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identity in the Hilbert space of the second qubit. If one gets the result λ after doing a
measurement Ω1 on state e1 the state collapses to |00⟩. That means instantaneously
the state of the second qubit is fixed independently of the spatial instance of the two
qubits. This is the origin of the EPR paradox, which Einstein is said to have already
called „spukhafte Fernwirkung“ („spooky action at a distance“) (Kiefer, 2015). In the
next chapter we will have a closer look at this effect.

2.2 Entanglement

A long-running discussion in the thirties was Einstein’s concept of "local realism"(Einstein
et al., 1935). One calls a theory local, if an influence between two space separated
particles can propagate only with speed of light. One speaks of a realistic theory if
one can predict the physical system with certainty without disturbing it. Einstein no-
ticed that quantum mechanics could not be assigned both properties and concluded
that it was incomplete. Later, John Stewart Bell was able to show that, if one follows
this concept, in certain experiments on pairs of particles the results of measurement
should always satisfy an inequality. However, quantum theory predicts the violation of
the inequality in certain cases for entangled particles. That violation was demonstrated
by many experiments so far (Weihs et al., 1998) (Aspect, 1999) (Giustina et al., 2015).
Entanglement is thus a key feature of quantum mechanics and excludes the simulta-
neous existence of the two principles of locality and realism observation of quantum
physical systems. While classical correlation exists also in quantum mechanic (mixed
states), entanglement has no analogue in classical theory. At least since the discovery
of possible practical applications such as quantum teleportation (Raissi et al., 2018),
quantum error correcting codes (Raissi et al., 2018) and superdense coding (Bennett
& Wiesner, 1992b), it has become a major component of current research. However,
the single characterization of entanglement for arbitrary multipartite states is challeng-
ing. In recent years, a class of so called k-uniform states has attracted attention. One
calls a n-partite state k-uniform if every density matrix reduced to reduced to parties of
size k is maximally mixed (Goyeneche & Życzkowski, 2014). For the special case of a
⌊N

2
⌋-uniform state one calls those absolutely maximally entangled (AME). AME states

have application in threshold quantum secret sharing schemes (QSS) and can be used
for open-destination teleportation protocols (Helwig, 2013).

Definition 2.2.1 (Entangled Pure State). Consider a pure state ΨAB ∈ HA⊗HB. Then
we call a state entangled if and only if it cannot be factored into the direct product of
arbitrary pure states ΨA ∈ HA and ΨB ∈ HB. That means ΨAB ̸= ΨA ⊗ ΨB for any
choice of ΨA and ΨB (Guedes et al., 2016).
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It has already been mentioned that for an entangled system, certain properties of sys-
tem A are correlated with system B even if the systems are spatially separated from
each other. To make it clearer we can have a look at an example. The state

|Ψ1⟩ =
1

2
(|00⟩ − |01⟩ − |10⟩+ |11⟩)

is not entangled because it can simply be expressed as a product state

|−⟩A ⊗ |−⟩B =

[
1√
2
(|0⟩ − |1⟩)

]
⊗
[

1√
2
(|0⟩ − |1⟩)

]
= |Ψ1⟩ .

Looking at the first Bell state state defined in 2.2, one can see that it can not be ex-
pressed as a tensor product between two Qubits A,B.

|e1⟩
!
= (α |0⟩A + β |1⟩A)⊗ (γ |0⟩B + δ |1⟩B) =

αγ |0A0B⟩+ αδ |0A1B⟩+ βγ |1A0B⟩+ βδ |1A1B⟩

The two equations αγ = βδ = 1√
2

and αδ = βγ = 0 contradict one another. Thus
the state can not be written in a seperable form. That means the e1 state is entangled
because it can not be split into two separate qubit pure states. One can now extend
this formalism to higher dimensions and multi-particle-systems. Consider a n-particle
pure quantum system.

Definition 2.2.2. Let A|B be a given bipartition for the system satisfying H = HA⊗HB.
If a state |Ψ⟩ ∈ H can be written in a form

|Ψ⟩ = |ϕ⟩A ⊗ |ξ⟩B ,

the system is separable across the bipartition A|B. If this is not possible, the two
subsystems are entangled.

To quantify entanglement properties of a given state, we need a function that maps a
given state density matrix to a scalar with the following properties.

Definition 2.2.3 (entanglement monotone). A function E(ρ) that maps density matri-
ces ρ into positive real numbers E(ρ) ∈ R+ is called entanglement monotone when it
satisfies the following properties (Plbnio & Virmani, 2007):

1. E(ρ) = 0 ⇔ the corresponding state is separable.

2. E does not increase on average under local operations and classical commu-
nication. That means on average E(ΛLOCC[ρ]) ≤ E(ρ).
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A stricter definition is an entanglement measure. It introduces the additional require-
ment that for a pure state ⟨Ψ|Ψ⟩ the measure reduces to the entropy of entanglement
(S ◦ TrB)(⟨Ψ|Ψ⟩) (Plbnio & Virmani, 2007). In contrast to property (2), it does not
increase under deterministic LOCC transformations. In the literature these terms are
often used synonymously. In addition, further properties like additivity and convexity for
entanglement measures can be defined which are not important for further understand-
ing. Thereby the question can be specified, if one wants to measure the entanglement
only between two given subsystems or if one wants to consider a global measure. Here
it is important to distinguish between a simple bipartite treatment or a whole sum over
all bipartitions as the following definitions explain.

Definition 2.2.4 (bipartition and partial Trace). For a given system with n particles of
dimension d we can define the partial trace with respect to a given bipartition (A|Ā,
made up of nA and nĀ particles as follows

TrBρAB = TrB

(∑
i,j,k,l

ci,j,k,l |ai⟩ ⟨aj| ⊗ |bl⟩ ⟨bk|

)
=
∑
i,j,k,l

ci,j,k,l |ai⟩ ⟨aj| ⟨bl|bl⟩ (2.3)

, where with basis {⟨ai|} and {⟨bi|} for HA and HB respectively.

For a better understanding, it might be helpful to keep track of the dimensions. The total
dimension of the entire Hilbert space is Dtotal = DA ·DB, where one can calculate DA =

dnA. Furthermore, it is important to notice that one can split a given state in a lot of
different ways. For example, we can have a look at four Qubits A,B,C,D. For this given
system one finds 7 different bipartitions {(A|BCD), (B|ACD), C|ABD), (D|ABC),

(AB|CD), (AC|BD), (AD|CD)}. Here, it can already bee seen that there are different
types of bipartitions. Namely those which are grouped in pairs of two particles and
those where a single particle is separated from the remaining ones. This leads us to
the next definition.

Definition 2.2.5 (k - bipartition). We call a bipartition (A|Ā) a k - bipartition when A has
cardinality of k. Without loss of generality one choose the set A such that |A| ≤ |Ā|
holds.

In our previous example one would have four 1-bipartitions and three 2-bipartitions.
With the introduction of the concept of bipartition, it is now possible to define entan-
glement measurements that can be defined for any quantum state and also take into
account a multipartite entanglement. For a given state and a given bipartition there ex-
ists many entanglement measurements, e.g. the entropy and the concurrence. In the
following we will have a look how one can define the different entanglement measures
and how one can extend it for all possible bipartitions.
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2.3 Concurrence and Purity

An entanglement monotone called concurrence was introduced by (Hill & Wootters,
1997). Given a pure state |Ψ⟩ =

∑
i αi |ei⟩ written in the Bell basis ei (2.2). The concur-

rence reads
C(Ψ) = | ⟨Ψ∗|Ψ⟩ | = |

∑
i

αi|2. (2.4)

It characterizes the total overlap of the state |Ψ⟩ with these four maximally entangled
bell states. (Rungta et al., 2001) generalized this definition for high dimensions to the
so called I-concurrence.

Definition 2.3.1 (I-concurrence). For a pure state |Ψ⟩ the concurrence reads

C (Ψ) =
√
2 · (1− Tr ρ2red), (2.5)

where ρΨ is the density matrix |Ψ⟩ ⟨Ψ| from Ψ and ρred = TrBρΨ the reduced density
matrix.

The concurrence has a clear geometric interpretation. Consider a two qubit system.
One can write a pure state as

|ϕ⟩ = α |0A0B⟩+ β |0A1B⟩+ γ |1A0B⟩+ δ |1A1B⟩

= |0A⟩ (α |0B⟩+ β |1B⟩)︸ ︷︷ ︸
⟨0A|ϕ⟩

+ |1A⟩ (γ |0B⟩+ δ |1B⟩)︸ ︷︷ ︸
⟨1A|ψ⟩

.

Regarding the definition of separability for a pure state (2.2), one can separate the
state |ϕ⟩ when the two vectors ⟨0A|ϕ⟩ and ⟨1A|ϕ⟩ in Hilbert space HB are parallel. This
is equivalent to

αδ − γβ = 0

(Bhaskara & Panigrahi, 2017) showed that one can write the requirement |αδ − γβ| =
|| ⟨0A|ϕ⟩∧⟨1A|ϕ⟩ || = 0 .The wedge product ∧ is an generalization of the cross product to
higher dimensions. That means || ⟨0A|ϕ⟩∧ ⟨1A|ϕ⟩ || represents the area of the parallelo-
tope spanned by the two vecors in the Hilbert space HB. For maximal entanglement
the two vectors should be perpendicular to each other. That means the resulting paral-
lelotope is a square. From the normalization constraints the side length is equal to 1√

2
.

Figure 1 shows an illustration of the two vectors in the Hilbert space HB for different
states. One can see that the Bell state e1 and |Ψ⟩ are maximally entangled. The state
|Φ⟩, on the other hand, is not, since the vectors do not form a square. They are closer
to being parallel. (Bhaskara & Panigrahi, 2017) generalized this concept also to higher
dimensions. Now, one can see that maximizing the concurrence of a state is equivalent
to minimizing the purity of the reduced density matrix purity = Tr ρ2.
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|0B⟩

|1B⟩

1√
2

1√
2

|e1⟩

1√
2

1√
2

|Ψ⟩

1
2

√
3
4

|Φ⟩

(
γ
δ

)
∼
(
−3
1

)

Normalization:
|| ⟨0A|ϕ⟩ ||2 + || ⟨1A|ϕ⟩ ||2 = 1

Figure 1 Geometric interpretation of the concurrence. The two vectors for each state
symbolize ⟨0A|ϕ⟩ and ⟨1A|ϕ⟩. For the |e1⟩ one directly sees that β = 0 and γ = 0
resulting in |00⟩ + |11⟩. For |Ψ⟩ one gets α = 1 and β = −1 (vector right bottom) and
γ = δ = −1. That results in |Ψ⟩ = |00⟩ − |01⟩ − |10⟩ − |11⟩. The same procedure leads
to |Φ⟩ = − |00⟩ − 3 |10⟩+ 1 · |11⟩

2.4 AME and k-uniform States

Definition 2.4.1. A state |Ψ⟩ ∈ H1 ⊗ ...⊗HN is called k-uniform when it satisfies

∀ (B ⊂ I : |B| = k) : ρB = TrBc |Ψ⟩ ⟨Ψ| = 1

dk
IB, (2.6)

where I = {1, ..., N} and the partical trace TrBc is acting on the complement Bc = I \B.
IB is the identity matrix in HB =

⊗
b∈B

Hb. The bipartition is then {B,B \ I}.

Resulting in a identity matrix after doing the partial trace the state is maximally entan-
gled according to the given bipartion. Then the resulting vectors ⟨0A|ϕ⟩ and ⟨1A|ϕ⟩ span
a high dimensional square comparing to figure 1. For N qudit systems of d levels the
generalized GHZ state |GHZ⟩ = 1√

d

∑d−1
i=0 |i⟩

⊗N is for example an one uniform state. It
is known that there exists no two-uniform state for a system of four qubits (Gour & Wal-
lach, 2010) but one can search for states being one uniform and whose average purity
of the reduced states for the bipartitions with |B| = 2 appears to be maximal. Those
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states are called maximally multi-qubit entangled state (MMES) (Zha et al., 2013). For
4-qubits there exist many MMES. For instance, the HS state defined by (Higuchi &
Sudbery, 2000)

|HS⟩ = |0011⟩+ |1100⟩+ ω (|0101⟩+ |1010⟩) + ω2 (|1001⟩+ |0110⟩) ω = e
2
3
iπ

When equation 2.6 is satisfied for k = ⌊N
2
⌋ it can be proven that the state is also k̄-

uniform with k̄ <= k (Scott, 2004). That is important to notice because when one
optimizes for an k uniform state there is no need to computing the reduced density
matrices for the bipartitions with length k̄ <= k. For an AME we can note the following
characteristics.

Definition 2.4.2. Absolutely maximally entangled states can be identified by the fol-
lowing equivalent and sufficient conditions (Helwig, 2013).

• |Ψ⟩ is maximally entangled for any possible bipartition. That means that all
reduced density matrices ρB for all possible subsets B ⊂ I : |B| ≤ ⌊N

2
⌋ are

totally mixed.

• The von Neumann entropy and concurrence of every subset are maximal.

As the requirements for such states are high, as already mentioned, there is no AME
for every system. Table 1 shows a section for systems of N particles of dimension D.
This indicates whether an AME exists for the respective system or if it is uncertain or
whether it could be proved that it cannot exist. If the respective AME does not exist,
the maximum possible k-uniform state is given.

D,N 2 3 4 5 6 7 8 9 10

2 1 1 2 2 3 3 4 (3) 4 (3) 5 (3)
3 1 1 2 2 3 3 4 (3) 4 5
4 1 1 2 2 3 3 4 4 5
5 1 1 2 2 3 3 4 4 5

Table 1 Green: AME exists, red: AME does not exist, yellow: unknown, number is
maximal k-uniform and brackets: maximal k if AME does not exist (Shi et al., 2020)
(Goyeneche & Zyczkowski, 2014).

2.5 Theseus

In contrast to classical systems the design of experimental setups for a given quan-
tum system is challenging. The reason for this is the exponential rising size of the
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Hilbert spaces for bigger system and corresponding increasing combinatorial calcula-
tions makes it hard for a scientist to design a proper experimental setup. In (Krenn
et al., 2021) an approach based on graph theory called THESEUS, an explainable AI
algorithm is given. For a given graph G(E, V ) with a set of bi-colored edges E =

{e21, ..., en+1
n } and vertices V = {v1, ..., vn} , where eji is the edge between the vertex vi

and vj. To translate the Graph G one defines the following. The vertices correspond to
given photon paths. An edge eji between vertex vi and vj represent a probabilistic pho-
ton pair creation in path vi and vj. The two colors of the edges symbolizes the mode of
the photon entering the respective path. Moreover, the weight ω of the edge correlates
to the amplitude. One can define a weight function to map the graph to state. This
weight function contains a term of two creation operators for each edge of the graph,
representing the pair creation associated with it. By applying Ψ(ω) to the vacuum state

|ϕ⟩ = Ψ(ω) |V ac⟩ (2.7)

one gets the resulting state |ϕ⟩. Here one can already notice that the resulting state
depends on the weights ω. That means one can use optimization techniques such as
gradient descent methods to optimize the weights. A common technique presented in
(Krenn et al., 2021) is to start with a full graph containing all possible edges. First,
one optimizes the weights and deletes those being smaller than a given threshold. Af-
terwards, a topological optimization is performed. The weights in ascending order are
deleted and the resulting graph is kept if the loss function does not fall below a certain
value. That result in a small graph a scientist can interpret and translate to different
types of quantum optical implementations. In the following we only focus on linear
terms. Higher order terms resulting from single photon non-lineareties will be ignored.
A prominent technique is to condition the photons by simultaneous detection in each
path.
Figure 4 shows an example graph with a corresponding experimental setup for a state
that reads |ϕ⟩ = 1√

2
(|1a2b0c0d⟩+ |1a1b0c0d⟩). Where the subscripts stand for a photon in

the given path with mode 0,1 or 2. The given graph has two perfect matchings pictured
in 4. A perfect matching is a subgraph Gsub covering every vertex of the graph G(E, V )

exactly once. To translate a graph into a state, one can proceed as follows, first, all
perfect matching must be found. Each perfect matching can be assigned a ket (ac-
cording to the colors assigned to each vertex. All perfect matchings for a ket are added
together. The resulting state is the sum of the weighted kets with the corresponding
normalization. Comparing 4 IV and the assumption of simultaneous detection of a
photon in each of the detectors A−D there are two possible options for a four photon
constellation. The first is that the photons come from ω1,2

A,B and ω0,0
C,D (first perfect match-

ing) or from ω1,0
A,C and ω1,0

B,D (second perfect matching). The resulting state is the sum
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of both possibilities weighted with the amplitudes for each state that results from the
corresponding perfect matching. Further experimental setups can be found in Figure
to generate the state explained in Figure 4.

A A B B C C D D

A D

PBS

B C

𝝎𝑨,𝑩
𝟏,𝟐

𝝎𝑨,𝑪
𝟏,𝟎

𝝎𝑪,𝑫
𝟎,𝟎

𝝎𝑩,𝑫
𝟏,𝟎

𝝎𝑨,𝑩
𝟏,𝟐

𝝎𝑨,𝑪
𝟏,𝟎

𝝎𝑪,𝑫
𝟎,𝟎

𝝎𝑩,𝑫
𝟏,𝟎

Figure 2 The left standard bulk optics is used, where PBS stands for polarizing beam
splitter. The right shows a setup called integrated photonics (Wang et al., 2019). Same
notation is used as in Figure 4
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Epsilon Solution

Some optimizations result in what we call an epsilon solution. That are solutions for
which the target state fidelity approaches one only as the pump rate proportional to
the scaling of the weights is decreased towards zero. An example is shown in figure
3. Here, THESEUS found a solution for the three-dimensional six-photonic GHZ state
|000000⟩ + |111111⟩ + |222222⟩. Three PMs create each of the three kets. However,
there is another PMs which creates an additional ket that reads |100122⟩. To minimize
the contribution of this cross term in comparison to the target terms, each edge of the
additional perfect matching is assigned a weight ϵ. For ϵ → 0 this ket goes faster to
zero ( ∝ ϵ3) than the required kets ( ∝ ϵ).

A

B C

D

EF

ϵ |000000⟩

1

ϵ

1

A

B C

D

EF

ϵ |111111⟩

1 1

ϵ

A

B C

D

EF

ϵ |222222⟩

ϵ1 1 A

B C

D

EF

ϵ3 |100122⟩

ϵ

ϵ

ϵ

Figure 3 All PMs of the epsilon solution of the three-dimensional six-photonic GHZ
state (Krenn et al., 2021).
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A B

C D

ω1,2
A,B

ω1,0
A,C

ω0,0
C,D

ω1,0
B,D

I experimental setup

ω1,0
A,C

ω1,2
A,B

ω1,0
B,D

ω0,0
C,D

A B C D

xi

single
photon
detector:

photon
pair
source:

ω

photon
pair
source:

II

Ψ(ω) ≈
∑

m
1
m!
(
∑

E(G) ω(E)x†(E)y†(E))m =∑
m

1
m!
(ω1,2

a,ba
†
1b

†
2 + ω1,1

c,dc
†
1d

†
1 + ω1,0

a,ca
†
1c

†
0 + ω0,1

b,db
†
0d

†
1

Weight function

need optimization
III

State and perfect matchings

A B

C D

ω1,2
A,B

ω0,0
C,D

+

A B

C D

ω1,0
A,C ω1,0

B,D

+ω1,2
a,b · ω

1,1
c,d |1200⟩ ω1,0

a,c · ω
0,1
b,d |1100⟩

IV

Figure 4 I shows an example graph with four edges and 4 vertices. II shows an
example experimental realization of the graph. Thereby all gray squares represents
probabilistic pair sources generating photon pairs. The colored lines mark the photon
path with their corresponding mode. The black circles stand for single photon detectors.
III shows the weight function Ψ(ω) applied on the given graph in I. For a given graph its
translation into the corresponding state is straightforward to calculate, but the inverse
is not. IV shows all PMs of the graph and the resulting state for each perfect matching.
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2.6 Loss function and Optimization Algorithm

We have seen that we can transform a graph G(E, V ) into a state depending on its
weights ω. If we want to generate a given state |Ψ⟩, we can define the fidelity of the
state |Ψ⟩ and the state |ΨG⟩ generated by the graph as a loss function L = ⟨|Ψ⟩ |ΨG⟩.
This approach was also followed in (Krenn et al., 2021). Since it is not clear from the
beginning, what is the most highly entangled state to achieve with the given resources,
i.e. number of photon sources, it makes sense to optimize according to a property of
a state. In this case we will choose a loss function that can find different k uniform
states. One can now choose between different loss-functions Lk. In order to optimize
for creating the maximal entanglement possible with given resources, we choose an
entanglement monotone π(ρ) such as the entropy or the concurrence as the loss func-
tion. For computational reasons it is suitable to choose the purity π(ρ) = Tr ρ2 in white
to (Zha et al., 2013) (Scott, 2004).

Definition 2.6.1 (loss function Lk). We define the loss as the sum over a bipartite
entanglement for a given set M of bipartitions

Lk (G) = Lk (|Ψ⟩) =
∑
m∈Mk

π(ρm), (2.8)

where ρm = Trmc |Ψ⟩ ⟨Ψ| is the reduced density matrix for a given bipartition b. Lk (G) =

Lk (|Ψ⟩) means that Ψ is the resulting state of the graph G.

If one wants to optimize to obtain a k - uniform state one can choose M such that it
contains all bipartitions of length k. An initial graph Gstart with weights ω ∈ R|G|,C|G| is
constructed containing all possible edges for the given system. Afterwards, the graph
is optimized by solving

min
ω∈R|G|,C|G|

Lk (G(ω)) . (2.9)

The edge with the smallest weight with respect to the magnitude is deleted. Then, the
difference between the loss function Lk (G) and the loss Lk (Greduced) is compared to
a threshold. If it holds a certain threshold one updates the graph G = Greduced. If this
was not successful the graph is optimized again with random weights. This is done a
maximum of tries_per_edge times. Those steps are continued as long as the amount
of edges of the graph G does not fall below a certain value min_edges or all edges
have been tried. The resulting graph has fewer edges than the initial graph Gstart,
but has almost the same loss if the threshold is chosen appropriately. The algorithm
is summarized in 0. Additionally, one can add the variance of the resulting values
π(ρm) to the loss function weighted with a factor var_fac. That makes sure that the
entanglement is distributed equally over all bipartions.
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Algorithm 1 The topological algorithm for optimizing highly entangled state.
Require: Full starting Graph Gstart (ω) with all possible edges for given dimension

initialization nth = 0, G = Gstart (ω) ,
while amount of edges min_edges < |G| and nth <= |G| do

remove edge ωnth
with nth smallest weight from G resulting in Greduced,

for try ∈ {0, ..., tries_per_edge } do
if try ̸= 0 then

ω = minω∈R|G|,C|G| Lk (Greduced(ωred)) ,
else

ω = ω , ▷ keep weights from previous graph
if Lk (Greduced)− Lk (G) < threshold then

set G = Greduced,
success = true,
break ,

if success is false then
keep G and set nth+ = 1 for trying next edge ,

Consider a system of four qubits. The maximal k one can choose is k = 2. Assume
that |Ψ⟩ = |0011⟩ + |1100⟩ + |1010⟩ + |0101⟩ and for the loss function in equation 2.8
we choose π(ρ) = Tr[ρ2]. The reduced density matrices for tracing out the last three
particles reads

TrAρ = ρA =
1

4
|0⟩ ⟨0|+ 1

4
|1⟩ ⟨1|+ 1

4
|0⟩ ⟨0|+ 1

4
|1⟩ ⟨1| = 1

2
I2. (2.10)

In the same way, one results in the identity for the remaining three splits into one
particle and the remaining ones. For k = 1 the loss function is minimized because it
easy to see that

Lk=1 (|Ψ⟩) =
∑

m∈{A,B,C,D}

Tr( ρm︸︷︷︸
∀m= 1

2
I2

)2 = 2,

where |Ψ⟩ is 1-uniform but for k = 2 for the splits {AB,CD} and {AC,BD} the reduced
density matrix also leads to the identity 1

4
I4 but for the split {AD,BC} the reduced

density matrix reads

ρAD =
1

2
(|01⟩ ⟨01|+ |10⟩ ⟨10|+ |01⟩ ⟨10|+ |10⟩ ⟨01|) . (2.11)

If you insert this into the loss function you get

Lk=2 (|Ψ⟩) = 2 · Tr

[(
1

4
· I4
)2
]

︸ ︷︷ ︸
For {AB,CD} and {AC,BD}

+Tr

(1

2

)2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0


2

︸ ︷︷ ︸
For {AD,BC}

=
3

2
>

3

4
= Lmin

k=2.
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One can see that |Ψ⟩ is not 2 - uniform because the reduced density matrix for the
bipartition {1, 4} is not the identity.

2.6.1 Optimizer

For the optimization problem defined in 2.9 an iterative method for constrained nonlin-
ear optimization is used called Sequential quadratic programming (SQP). In our case
the problem reads

min
ω∈R|G|,C|G|

L (G(ω)) s.t. g(ω) = |ω| − 1 ≤ 0 (2.12)

One can Taylor expand L up to quadratic order with Hessian HL and g linear. Then, the
SQP solves the problem iteratively. Starting from ωk one solves (Bartholomew–Biggs,
2008)

L̃(ωk + d) := ∇L(ωk)Td+ dTHL(ω
k)d → min

d∈Rn,Cn
,

s.t.

g̃(ωk + d) := g(ωk) +∇g(ωk)d ≤ 0

and the update step is done with

ωk+1 = ωk + dk.

Thus, for the SQP a linear quadratic optimization problem has to be solved in each
iteration. This is done with conventional methods, for example on the reduction Ad = b.
In our case, it is straightforward to show that the quation system is given by

A =

[
HL(ω) +HT

L (ω) ∇gT (ω)
∇g(ω) 0

]
and b =

[
−∇L(ω)
−g(ω)

]
.

2.6.2 Source Code

Figure 5 shows a schematic overview over the library THESEUS. First, the config file is
used to setup the initial graph. The initial graph is input for the class topological_opti.
The class method pre_optimize_start_graph pre-optimizes the graph pre_opt times.
After passing the resulting graph to topologicalOptimization a while loop is per-
formed until the termination_condition is fulfilled. Within the while loop
optimize_one_edge deletes an edge and performs an optimization. When check is
successful the reduced graph is kept. Otherwise, we optimize the current edge again
tries_per_edge times. In the end, the graph is saved using the class saver. For
an analysis of the results the class analyzer is available with two main functions.
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info_statex generates an overview plot of different information and the function
all_perfect_matchings_to_pdf saves a pdf containing all graphs of the possible per-
fect matchings. The explained code is available in GitHub2 as part of a larger python
library implementing digital discovery of experimental setups for a range of quantum
optical experiments.

Rest

config.json

setup

For new sample

success: update graph

Figure 5 Schematic overview over the library THESEUS.

2 https://github.com/artificial-scientist-lab/Theseus.git

https://github.com/artificial-scientist-lab/Theseus.git
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3 Results

During the search for entangled states, we have limited ourselves mainly to the systems
of qubits and qutrits given in Table 1. In the following we will specify all states with
omitted normalization. For simplicity, we introduce the following notation. For a given
state |Ψ⟩ and a given bipartion B with the reduced density matrix ρred the normalized
concurrence reads

Cn (|Ψ⟩) = C (Ψ)

βmax
=

√
2 · (1− Tr ρ2red)

βmax
,

where βmax is the maximum value the entropy can have for that split. This means if
a state is separable the result is zero and if the reduced density matrix is maximally
mixed the result is equal one. We denote a state resulting from the optimization for n
particles of dimension d with loss function L as follows

|Ent(n, d, k)⟩ or |Ent(n, d, k)c⟩ , (3.1)

where the subscript c denotes the optimization with complex weights. For the graphs
shown, the white diamonds symbolize that the corresponding edge weight is negative.
All used config files can be found in the mentioned GitHub.

3.1 Four Qubits

For a system of four qubits, the optimization finds a variety of results. One example
reads

|Ent(4, 2, 2)⟩ = |1010⟩+ |1101⟩ − (|0011⟩+ |0100⟩). (3.2)

The state |Ent(4, 2, 2)⟩ is maximally entangled for all bipartitions except for {AC,BD}.
When one optimizes for complex values and setting var_fac = 5 one can obtain a state
similar to the |HS⟩ state

|Ent(4, 2, 2)c⟩ =e0.02·i·π · |0011⟩+ e−0.52·i·π · |0101⟩+ e−0.91·i·π · |0110⟩+

e0.47·i·π · |1001⟩+ e 0.73·i·π · |1010⟩+ e0.88·i·π · |1100⟩

That state is k=1 uniform but compared to |Ψ2222⟩ the entanglement is distributed over
all bipartions meaning for the three bipartion with length two the normalized entropy
reads 0.943 which is equivalent to the |HS⟩ state. The corresponding graphs are shown
in 6.
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Figure 6 The left graph is for the state |Ent(4, 2, 2)⟩ having six edges and four PMs
with all weights ωi = ±1. The right graph is for the state |Ent(4, 2, 2)c⟩ having nine
edges and six PMs with.

3.2 Five Qubits

Optimizing entanglement for five qubits one can find an experimental realization of a
corresponding AME. Figure 7 shows the graph for the states

|Ent(5, 2, 2)1⟩ = |00000⟩+ |01101⟩+ |01110⟩+ |10110⟩+

|11000⟩+ |11011⟩ − |00011⟩ − |10101⟩

|Ent(5, 2, 2)2⟩ = |01011⟩+ |01100⟩+ |10110⟩+ |11010⟩−

|00000⟩ − |00111⟩ − |10001⟩ − |11101⟩

Those states are equivalent with respect to LOCC (local operations and classical com-
munication) to the states |0L⟩ and |1L⟩ respectively that were used for a quantum error
correction code in Laflamme et al., 1996.
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Figure 7 The left graph is for the state |Ent(5, 2, 2)1⟩, the right one for |Ent(5, 2, 2)2⟩.
Both have 12 edges and eight PMs with all weights ωi = ±1.

3.3 Six Qubits

Optimizing for a system of six qubits with a loss function Lk=2 for two uniform states we
found the following state

|Ent(6, 2, 2)⟩ = |100011⟩+ |101110⟩ − (|000000⟩+ |001101⟩+

|010111⟩+ |011010⟩+ |110100⟩+ |111001⟩)

The graph is shown in Figure 8. It is k=2 uniform and from
(
6
3

)
= 20 possible three

bipartions are 12 maximal mixed and for the remaining eight the normalized entropy
reads 0.926. Interestingly, we also found a epsilon solution for the existing AME(6,2).
One can write the weights ωi(ϵ) of the graph shown in Figure 8 in dependent of an ϵ > 0

such that they have an analytic structure. Then the resulting state reads

|Ent(6, 2, 3)⟩ = ϵ ( |000010⟩+ |000100⟩+ |001001⟩+ |010101⟩+

|011000⟩+ |011110⟩+ |101010⟩+ |110000⟩+

|111011⟩+ |111101⟩ − |001111⟩ − |010011⟩−

|100001⟩ − |100111⟩ − |101100⟩ − |110110⟩ )

+ϵ2 ( |000000⟩+ |000110⟩+ |010001⟩+ |010111⟩+

|110010⟩+ |110100⟩+ |111001⟩+ |111111⟩ ) .
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All terms being linear in ϵ are needed for the known AME(6,2), while additional terms
occur but are quadratic in ϵ. For ϵ → 0 only the contributions linear in ϵ are relevant.
Because of the very interesting structure of this state all types of perfect machtchings
are summarized in Figure 9.

0

12

3

4 5

0

12

3

4 5

Figure 8 The graph on the left produces the |Ent(6, 2, 3)⟩. It has 21 edges and 41 PMs
with all weights ωi ∈ {±ϵ,

√
2,±1,−ϵ ·

√
8,±1± ϵ}. The graph on the right produces the

|Ent(6, 2, 2)⟩. It has 12 edges and eight PMs with all weights ωi = ±1.
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Figure 9 Figure shows the six different types of PMs occurring in the solution for the
six Qubits Fake AME. Green background symbolizes that those are ∝ ϵ and the red
PMs are ∝ ϵ. The sum for each type stands at the right corner. Moreover there are
also PMs of the same kind but with different sign.
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3.4 Three and Four Qutrits

The three dimensional three-particle GHZ state is a k=1 uniform state and has been
previously described as a graph (Krenn et al., 2021). All k=1 uniform states found here
are equivalent to the GHZ state by local unitary operations. One example reads

|Ent(3, 3, 1)⟩ = |010⟩+ |121⟩+ |202⟩),

where one can find the corresponding graph in Figure 10. For the case of four qutrits
we did not find a suitable graph for AME(4,3), for the existing AME(4,3) even with two
or four with additional resources in the form of ancillary photons. Figure 10 shows a
one uniform state with four qutrit being maximal entangled for all bipartions, except for
{AB,CD} it is separable. This can also be read directly from the graph, since there
are no edges between the two nodes 0,1 and 2,3 and the two states can therefore be
generated separately. The corresponding state reads

|Ent(4, 3, 1)⟩ = |0101⟩+ |0120⟩+ |1201⟩+ |1220⟩+

|2001⟩+ |2020⟩ − ( |0112⟩+ |1212⟩+ |2012⟩).

0

1

2

3

0

1

2

3

Figure 10 The graph on the left produces the state |Ent(3, 3, 1)⟩. It has six edges
and three perfect matching with all weights ωi = ±1. The right graphs producing
|Ent(4, 3, 1)⟩ has six edges and nine PMs whereby all weights read ωi = ±1.

3.5 Higher Dimensional Systems

For systems with higher dimensions or multiple particles, it turned out to be very difficult
to find possible graphs corresponding to a k-uniform state except for k = 1. Neverthe-
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less, we were able to find a nearly two uniform state for seven qubits, with 20 out of
21 bipartitions being maximally entangled, where for the one bipartion the normalized
concurrence reads 0.63. This state reads

|Ent(7, 2,all)⟩ =|0011110⟩+ |0101000⟩+ |0110111⟩+

|1001101⟩+ |1010010⟩+ |1100100⟩

− (|0000001⟩+ |1111011⟩).

The corresponding graph is shown in Figure 11. For eight qubits it was possible to find
a two uniform state whereby 48 of 56 bipartitions of the bipartitions having length 3,
were maximally entangled. This state reads

|Ent(8, 2, 4)⟩ =|00010000⟩+ |00010111⟩+ |01101011⟩+

|01101100⟩+ |01110001⟩+ |10100010⟩+

|10100101⟩+ |10111111⟩+ |11000100⟩+

|11011001⟩ − (|00001010⟩+ |00001101⟩+

|01110110⟩+ |10111000⟩+ |11000011⟩+

|11011110⟩).
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Figure 11 The right graph corresponds to |Ent(7, 2,all)⟩ having 14 edges and eight
PMs with all weights ωi = ±1. The left graphs producing |Ent(8, 2, 4)⟩ has 18 edges
and 20 PMs whereby all weights read ωi = ±1.
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3.6 Discussion and Outlook

The question posed at the beginning that how must a experimental setup look like to
get the maximally entangled state according to a given entanglement measurement
with a given set of experimental constraints, like amount of linear optic components
producing N photons of dimensionality di, could be answered. To give an order of
magnitude of the search space for five qubits, one can look at the possibilities on
graphs with weights ω = ±1, which is roughly 2.4 · 1023. The fact that one finds an
AME as result shows the efficiency of THESEUS. For higher systems, however, the
search is more difficult. Here extensions would be conceivable which set up a random
start graph constellation for larger systems to make the search easier. Also it would
be interesting to investigate if there exists generalization or a pattern for the AMEs
or k uniform graphs similar to the construction over orthogonal arrays (Li & Yan-Ling,
2019). For this purpose, AI could be used again, for example with an algorithm that
transforms the graphs into a simple 3d structure in order to recognize structures more
easily. Another interesting approach would be to build a database with properties of
different graphs, e.g. adjacent matrix or its eigenvalues and also the entanglement
measure of the resulting state. Afterwards, one could use clustering or neural networks
to draw conclusions about patterns. This could allow an even deeper understanding
of the graphs. Furthermore, it was impressively shown that the basic idea of using
AI to advance scientific discoveries and to make them understandable for scientists
is a sustainable approach. In other areas of research, too, it can be seen that the
use of machine learning approaches can advance research. Be it as a diagnostic tool
in medicine (Kaplan et al., 2021), as a control for fusion reactor (Seo et al., 2022),
to search for alternative physics (Chen et al., 2022) or simply to understand humans
better (Sun et al., 2022). So it remains exciting what discoveries we can expect from
AI and what role we scientist will play in the future.
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