
Lecture 9. Entanglement.  
Types of entanglement: frequency, wavevector, polarization. Witnesses of entanglement. Measures of 

entanglement. Photon-number entanglement. 
 

1. The EPR paradox and entangled states 
 

The whole subject of quantum entanglement emerged after the discussion that took place at 
the early time of quantum mechanics, about 80 years ago. 
 
Continuous variables and an example from SPDC. In their paper of 1935, Einstein, Podolsky 
and Rosen (EPR), in the discussion with Bohr, considered an example that, from their 
viewpoint, showed that the quantum mechanical description was incomplete. Namely, they 
considered a pair of particles A,B created at some point at the same time moment, so that the 
conservation of momentum led to equations for their coordinates and momenta: 
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In other words, the positions of the particles are correlated and the momentums, anti-
correlated. Then, after the particles have separated by a large distance, one can perform 
measurements on one of them, and hence bring it into a state with definite x or p. How then, 
asked EPR, the other particle is brought into a state with fixed x and p without any action on 
it? Does the reduction of its wavefunction occur non-locally? This led to the conclusion that 
the description with the wavefunction is incomplete. Moreover, one can measure the 
coordinate for one particle and the momentum for the other one and then violate the 
uncertainty relation. Such particles were called entangled (verschränkt); mathematically, they 
can be defined by the condition that the total wavefunction cannot be factorized: 
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Note that in the 1930-s, this example was 
purely a thought experiment 
(Gedankenexperiment). But today one can 
prepare such a state via SPDC (Fig.1) or 
FWM. If the parametric gain is small, the 
state generated in the non-collinear regime 
is  
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This is definitely an entangled state since 
the wavefunction is not a product of the wavefunctions of particles A, B. But this 
entanglement is weak (we will see it in the end). Also, this is still a simplification: there are 
not just two plane-wave modes A, B but a whole spectrum of k-vectors and frequencies. If, for 
simplicity, we fix the frequencies, then the two-photon part of the wavefunction has the form  
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(see Lecture 7), where Ak  

and Bk  are transverse k-
vectors (momenta) of the 
photons. If we look at the 
shape of the two-photon 
amplitude ),( BA kkF , we 
will see that it is stretched 
(Fig.2 left), i.e., the 
transverse wavevectors of 
the two photons are anti-
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correlated. Note that for a photon, the k-vector is similar to the momentum: .,, BABA kp   

Similarly, the transverse coordinates of exit from the crystal for the two photons, BA xx , will be 
correlated (Fig.2a right), simply because the two photons are created ‘at the same point’. More 
accurately, the probability amplitude in the near field ),( BA xxF is the Fourier transform of the 

probability amplitude in the far field, ),( BA kkF . The state in the near field can be written as  

BABABABA xaxaxxFdxdx 00)()(),(  .     (2) 

Equations (1,2) represent an example of a state entangled in continuous variables. To measure 
such entanglement in experiment, one should look at both far and near field. The far-field 
probability distribution (Fig.2 left) is obtained by placing two detectors either simply far from 
the crystal (Fig.1) or into the focal plane of a lens. To obtain the near field, one should build 
the image of the crystal (for instance, 2F-2F scheme or, better, with a magnification) and put 
two detectors into the image plane.  
 
If the photons A,B and not entangled (separable), one can obtain the condition [Mancini et al., 
PRL 88, 120401 (2002)]  
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Or, in terms of wavevectors, 
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Condition (3) is similar to the condition  
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where 
ABx 2 and 

ABp2 are variances of the conditional distribution for photon B provided that 

photon A was registered at some point of the far (near) field.  
Condition (4) was tested in the work J. C. Howell et al., PRL 92, 210403 (2004). They found a 
value 201.0  for (4), i.e., violated the separability condition. 
 
Frequency and time entanglement. Similarly, SPDC generates photon pairs that are entangled 
in other two complementary variables, frequency and time. This is especially relevant for 
FWM in fibers, where there is only a single spatial mode and therefore wavevector/position 
entanglement cannot be observed. The state, again, can be written as  
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In other words, each of the photons A,B can be emitted within a broad range of frequencies, 
but if photon A is discovered with some frequency 0A , its match photon B will have a ‘rather 

certain’ frequency 0B . The frequencies are anti-correlated due to the condition 

pBA   00 .      

And of course there is also time entanglement,  

BABABABA tatattFdtdt 00)()(),(   ,     (6) 

which means that any of the photons is emitted at an uncertain time, but there is correlation 
between times of emission At and Bt .  
 
Quadrature squeezing and entanglement. Another example of continuous-variable 
entanglement is quadrature entangled light, which was considered in Lecture 8. Because 
quadratures pq, for a light mode are similar to the position and momentum of a quantum 
particle, this is another example of EPR correlations. For Gaussian states, one uses the Duan 



criterion, which is in this case a sufficient and necessary condition for inseparability (for any 
states, it is a sufficient condition): 
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This condition was introduced by [L.-M. Duan et al., PRL 84, 2722 (2000)] and, 
independently, by [R. Simon, PRL 84, 2726 (2000)].  
 
Dichotomic variables and an example from SPDC.  Much more convenient is to discuss 
entanglement in terms of dichotomic variables (taking only 2 values). The first formulation of 
the EPR paradox in terms of such variables was by Bohm who considered the projection of 
the spin of a spin-1/2 particle on the direction of the magnetic field. This quantity is known to 
be measurable in the Stern-Gerlach experiment (Fig.3, top). One can then imagine two spin-
1/2 particles born in such a way that each of them has the spin direction uncertain, but there is 
strict correlation between the spin directions of the two particles. The corresponding 
wavefunction can be written as  
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This state is also entangled.  
The dichotomic version of the EPR paradox is important 
for two reasons. First, it allows for an easy derivation of 
an inequality (Bell’s inequality) that can be tested in 
experiment. Second, in an experiment one can use, 
instead of spin ½ particles, polarized single photons. 
Polarization of a photon can be measured similarly to the 
spin direction (Fig.3, bottom), using a polarization 
beamsplitter instead of a large complicated setup with 
magnets.  
 
Polarization-entangled photons can be also produced via 
SPDC through type-II phase matching. See Lecture 8: 
the two-photon state emitted via SPDC can be written as  

 }.{
2

1
BABA

HVVH         (8) 

This type of a state is called a Bell state, and there are four of them (see Lecture 8). 
 
2. Measures of entanglement. 
The Duan and Mancini criteria do not quantify the entanglement; like other ones (witnesses), 
which only tell us whether there is or there is not entanglement. More interesting are measures 
of entanglement, and we will discuss two of them here. 
 
The Schmidt modes and the Schmidt number. Consider a state (1); then the two-photon 
amplitude (TPA) can be always represented as (the Schmidt theorem) 
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This is the Schmidt decomposition; )(),( BnAn kk   are the Schmidt modes and n are the 

Schmidt eigenvalues.  
 
If the TPA in the form (9) is substituted in (1), the latter takes the form  
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If there is only one term here, the state is separable; if there are many terms, the state is 
entangled. One can therefore quantify the degree of entanglement of a photon pair by the 
Schmidt number  
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It is large if there are many terms in the Schmidt decomposition (9). Therefore it is a measure 
of entanglement. 
 
The Schmidt decomposition can be always performed numerically through the standard 
singular-value decomposition (svd).  
 
The Schmidt decomposition is valid for both continuous variables and discrete variables. For 
instance, for state (8) the decomposition contains just two terms, with ,2/110   and 
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Fedorov ratio. This is an operational measure of entanglement: while the Schmidt number is 
not trivial to measure, the Fedorov ratio is relatively easy to measure in experiment. For 
instance, in the case of wavevector (k) entanglement, it is defined as  
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where k and k are, respectively, the unconditional and conditional distributions of the 

function 
2

),( BA kkF  (Fig.2). For a Gaussian TPA, one can show that KR  exactly.  

 
3. Twin beams entanglement. 
Twin beams generated through high-gain PDC and FWM have another type of entanglement, 
namely entanglement in the photon number. Indeed, given the Hamiltonian  
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with high enough  , the state at the output can be written as  
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which is already a Schmidt decomposition with .
2

NN C Therefore, the higher the gain, the 

slower the amplitudes NC  decay with N, and the larger the Schmidt number. From this, it is 

clear that the two-photon state considered at the beginning has a very low degree of photon-
number entanglement.  
 
This kind of entangled state is macroscopic as it contains a lot of photons. 
 
Home task: do the Schmidt decomposition for the example we considered earlier: PDC in a 3 
mm long BBO crystal pumped at 800 nm with the pump beam waist 100 um. Also, calculate 
the Fedorov ratio, and compare R and K.  
  
Books: Bachor, Ralph, A Guide to Experiments in Quantum Optics. 


