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Organizer  
 
Florian Marquardt, MPL Erlangen 

 
Workshop Location  
 
Max Planck Institute for the Science of Light, 

Staudtstraße 2, 91058 Erlangen, Germany 

 
Workshop rooms (see maps next pages for precise location)  

 
Talks 

8th -10th Leuchs-Russell Auditorium, 1st floor 

 
Lunch 

8th – 10th May MPL Foyer, ground floor 
 

Dinner 

8th May MPL Foyer, ground floor 

9th May Entlas‘ Keller, Erlangen 
 

Poster Session 
 
8th May MPL Foyer, ground floor 
 

Contact  
 
Ms. Gesine Murphy, MPL Room: A.2.108, Tel.: +49 9131 7133 401, 

Email: gesine.murphy@mpl.mpg.de 
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Dinner on 9th May 2019 -  
How to get to Entla‘s Keller, An den Kellern 5-7, 91054 Erlangen 

 
 
 
By bus, e. g. bus 293 at 17:39, 17:59, 18:19 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Or on foot: 
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Schedule Wednesday, 8th May 2019  
 
 
 

09:30 – 09:45 Registration 

09:45 – 10:00 Welcome and Opening Remarks 

10:00 – 10:40 Reinforcement learning and AI for quantum 
experiment 
Hans-Jürgen Briegel,  University of Innsbruck (Austria) 

10:40 – 11:15 Topological quality control 
Paul Baireuther, Bosch Center for Artificial 
Intelligence (Germany) 

11:15 – 11:35 Quantum error correction via Hamiltonian learning 
Eliska Greplova, ETH Zurich (Switzerland) 

 

11:35 – 11:50 Coffee break 

 
11:50 – 12:25 

 
Supervised learning of time-independent Hamiltonians 
for gate design 
Mauro Paternostro, Queen’s University Belfast 
(UK) 

12:25 – 12:45 Reinforcement learning for quantum memory 
Thomas Fösel, MPL (Germany) 

12:45 – 13:20 Efficiently measuring and tuning quantum devices 
using machine learning 
Natalia Ares, University of Oxford (UK) 

13:20 – 14:00 Lunch 
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Schedule Wednesday 8th May 2019  
 
 
 

14:30 – 15:05 Integrating neural networks with Rydberg quantum 
simulators 
Evert van Nieuwenburg, Caltech (USA) 

15:05 – 15:25 Emulating entanglement on temporally sampling 
deep neural networks 
Stefanie Czischek, University of Heidelberg (Germany) 

15:25 – 15:40 Coffee break 

 
15:40 – 16:15 

 
Reinforcement learning to prepare quantum states 
away from equilibrium 
Marin Bukov, Berkeley (USA) 

16:15 – 16:35 Variational neural network ansatz for steady-
states in open quantum systems 
Filippo Vicentini, Université Paris Diderot (France) 

17:00 – 18:00 Discussion time 

18:30 – 19:30 Dinner at MPL 

19:30 – 21:00 Poster session 
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Schedule Thursday, 9th May 2019  
 
 
 

10:00 – 10:40 Generative models for wavefunction reconstruction 
Roger Melko, University of Waterloo (Canada) 

10:40 – 11:15 Reinforcement learning decoders for fault-tolerant 
quantum computation and other perspectives of 
quantum machine learning 
Jens Eisert, Freie Universität Berlin (Germany) 

11:15 – 11:35 Speedup problem for quantum walks and quantum 
annealing algorithms implementation 
Aleksandr Alodzhants, ITMO University St. Petersburg 
(Russia) 

11:35 – 11:50 Coffee break 

11:50 – 12:25 Machine learning for certification of photonic 
quantum information 
Fabio Sciarrino, Sapienza Università die Roma (Italy) 

12:25 – 12:45 Error correction for the toric code using deep 
reinforcement learning 
Mats Granath, University of Gothenburg (Sweden) 

12:45 – 13:20 Using a recurrent neural network to reconstruct 
quantum dynamics of a superconducting qubit from 
physical observations 
Emmanuel Flurin, Quantronics – CEA (France) 
  

13:20 – 14:00 Lunch 
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Schedule Thursday, 9th May 2019  
 
 
 

14:30 – 15:05 Learning the dynamics of quantum systems using 
statistical inference 
Raffaele Santagati, University of Bristol (UK) 

15:05 – 15:25 Neural network decoders for large-distance 2D 
Toric codes 
Xiaotong Ni, TU Delft (Netherlands) 

15:25 – 15:40 Coffee break 

15:40 – 16:15 Deep reinforcement learning for steering qubits 
Enrico Prati,  
Consiglio Nazionale delle Ricerche (Italy) 

16:15 – 16:35 Divergence of predictive model output as 
indication of phase transitions 
Niels Loerch, University of Basel (Switzerland) 
 

17:00 -18:00 Discussion time 

18:30 – 20:30 Dinner at Entla’s Keller 

20:30 – 21:00 Scientific Walk ‘n Talk 
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Schedule Friday, 10th May 2019  

 
10:00 – 10:40 Learning for adaptive quantum control 

Barry Sanders, University of Calgary (Canada) 

10:40 – 11:15 Discovering physical concepts with neural networks 
Renato Renner, ETH Zurich (Switzerland) 

11:15 – 11:30 Coffee break 

 
11:30 – 11:50 

 
Experimental Protocol for Quantum State Engineering 
throughone-dimensional Quantum Walk 
Alessia Suprano, Università di Roma Sapienza (Italy) 

11:50 – 12:10 Reinforcement learning in quantum optics 
experiments 
Alexey Melnikov, University of Basel (Switzerland) 

12:10 – 12:30 QAR-Lab Site Report and the PlanQK Initiative 
Thomas Gabor, Christoph Roch, LMU Munich 
(Germany) 

12:30 – 13:30 Lunch 

13:45 – 14:20 Stochastic estimation of dynamical variables 
Stefan Krastanov, Yale Quantum Institute (USA) 

14:20 – 14:55 Neural-network approach to dissipative quantum 
many-body dynamics 
Michael Hartmann, Heriot-Watt University (UK) 

14:55 – 15:00 Closing remarks 
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Poster session Wednesday, 8th May 2019, 18:30  

 
Sudoku and other NP-hard optimization problems with Neural Networks 
Shahnawaz Ahmed, Chalmers University of Technology (Sweden) 

Quantum digital simulation of three toy models using IBM quantum hardware 
Pedro Cruz, University of Porto (Portugal) 

Exploring graph complexity with quantum spin systems 
Durga B. Rao Dasari, University of Stuttgart 

Entanglement Stabilization in a Superconducting Quantum Processor using Parity Detection 
and Real-Time Feedback 
Christopher Eichler, ETH Zürich 

Quantum Model Learning 
Brian Flynn, University of Bristol (UK) 

The contribution of quantum computing in developing an artificial general intelligence 
Marc Gänsler, LMU Munich (Germany) 

Tbd 
Ilia Iakovlev, Ural Federal University 

Supervised learning of time-independent Hamiltonians for gate design 
Luca Innocenti, Queen’s University Belfast (UK) 

Infrared Molecular Fingerprinting:A Machine-Learning Analysis 
Kosmas Kepesidis, LMU Munich (Germany) 

A Reinforcement Learning approach for Quantum State Engineering 
Jelena Mackeprang, University of Stuttgart (Germany) 

Tbd 
Rodrigo Martinez-Pena, IFISC (Spain) 

Theoretical preparation of quantum nanoskyrmion state for experimental realization on 
quantum computer 
Vladimir Mazurenko, Ural Federal University (Russia) 

Self-learning Monte Carlo simulations of classical and quantum many-body systems 
Kai Meinerz, University of Cologne (Germany) 
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Tbd 
André Melo, TU Delft (Netherlands) 

Machine learning to create ordered states in ultra-cold systems 
Rick Mukherjee, Imperial College London (UK) 

Numerical optimisation of silicon nitride photonic crystal nanobeam cavities 
Jan Olthaus, University of Münster (Germany) 

A novel method of data remapping for quantum information science 
Syed Adil Rab, Cogisen Srl (Italy) 

Design of robust control of quantum systems with polychromatic low-frequency radiation 
German Sinuco Leon, University of Sussex (UK) 

Machine learning to create ordered states in ultra-cold systems 
Frederic Sauvage, Imperial College London (UK) 

Divergence of predictive model output as indication of phase transitions 
Frank Schäfer, University of Basel (Switzerland) 

Improving Quantum Metrology with Reinforcement Learning 
Jonas Schuff, University of Tübingen (Germany) 

Neural network agent playing spin Hamiltonian games on a quantum computer 
Oleg Sotnikov, Ural Federal University (Russia) 

Machine learning for long-distance quantum communication 
Julius Wallnöfer, University of Innsbruck (Austria) 

Quantum State Tomography using Quartic Potentials and Neural Networks 
Talitha Weiß, University of Innsbruck (Austria) 

Quantum Circuit Design for Training Perceptron Models 
Yu Zheng, Chalmers University of Technology 
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Figure 1. Measurement of a device stability diagram performed by one of our algorithms. 

Abstracts Talks  

 
Natalia Ares 
Efficiently measuring and tuning quantum devices using machine learning 
Fulfilling the promise of quantum technologies requires to be able to measure and tune several devices; 
fault-tolerant factorization using a surface code will require ~108 physical qubits. A long-term approach, 
based on the success of integrated circuits, is to use electron spins in semiconducting devices. A major 
obstacle to creating large circuits in this platform is device variability. It is very time consuming to fully 
characterize and tune each of these devices and this task will rapidly become intractable for humans 
without the aid of automation. 
I will present efficient measurements on a quantum dot performed by a machine learning algorithm. This 
algorithm employs a probabilistic deep-generative model, capable of generating multiple full-resolution 
reconstructions from scattered partial measurements. Information theory is then used to select the most 
informative measurements to perform next. The algorithm outperforms standard grid scan techniques in 
different measurement configurations, reducing the number of measurements required by up to 4 times. I 
will also show the use of Bayesian optimisation to tune a quantum dot device. By generating a score 
function, we can efficiently navigate a multi-dimensional parameter space. We tune the device to the single-
electron tunnelling regime with no previous knowledge of the device characteristics in less than a 
thousandth part of the time that it requires manually. 
 

 
 
Paul Baireuther 
Topological quality control 
The continuous effort towards topological quantum devices calls for an efficient and non-invasive method to 
assess the conformity of components in different topological phases. In this talk, I will discuss how machine 
learning can assist in measuring local topological invariants [1]. 
[1] M. D. Caio, M. Caccin, P. Baireuther, T. Hyart, and M. Fruchart, arXiv:1901.03346 
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Marin Bukov 
Reinforcement learning to prepare quantum states away from equilibrium 
The ability to prepare a physical system in a desired quantum state is central to many areas of physics such 
as nuclear magnetic resonance, cold atoms, and quantum computing. Yet, preparing states quickly and with 
high fidelity remains a formidable challenge. In this work I will show how a Q-Learning agent succeeds in the 
task of finding short, high-fidelity driving protocols from an initial to a target state in non-integrable many-
body quantum systems of interacting qubits. RL methods learn about the underlying physical system solely 
through a single scalar reward (the fidelity of the resulting state) calculated from numerical simulations of 
the physical system. If time permits, I will demonstrate that quantum state manipulation, viewed as an 
optimization problem, exhibits a spin-glass-like phase transition in the space of protocols as a function of the 
protocol duration. Our study highlights the potential usefulness of RL for applications in out-of-equilibrium 
quantum physics. 
 
 
Jens Eisert 
Reinforcement learning decoders for fault-tolerant quantum computation and other 
perspectives of quantum machine learning 
Quantum machine learning comes in many facets: It either makes use of a methodology of machine 
learning for particularly suitable classes of problems involving quantum data. It can also refer to making use 
of ideas of coherent notions of learning in the quantum information context. The main part of the talk will 
be concerned with an instance of the first kind for which ideas of machine learning seem particularly 
suitable [1]. Topological error correcting codes, and particularly the surface code, currently provide the most 
feasible roadmap towards large-scale fault-tolerant quantum computation. As such, obtaining fast and 
flexible decoding algorithms for these codes, within the experimentally relevant context of faulty syndrome 
measurements, is of critical importance. In this work, we show that the problem of decoding such codes, in 
the full fault-tolerant setting, can be naturally reformulated as a process of repeated interactions between a 
decoding agent and a code environment, to which the machinery of reinforcement learning can be applied 
to obtain decoding agents. As a demonstration, by using deepQ learning, we obtain fast decoding agents for 
the surface code, for a variety of noise-models. In an outlook, depending on the time, I may elaborate on 
further perspectives and some ideas towards a statistical basis of quantum learning theory [2]. 
R. Sweke, M. S. Kesselring, E. P. L. van Nieuwenburg, J. Eisert, arXiv:1810.07207. 
In preparation. 
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Emmanuel Flurin 
Using a Recurrent Neural Network to Reconstruct Quantum Dynamics of a 
Superconducting Qubit from Physical Observations 
E. Flurin 1, L. S. Martin 2, S. Hacohen-Gourgy 3, I. Siddiqi 2 
1 Quantronics group, SPEC, IRAMIS, DSM, CEA Saclay, 91191 Gif-sur-Yvette, France. 
2 Quantum Nanoelectronics Laboratory,Department of Physics, UC Berkeley CA 94720, USA. 
3 Technion Israel Institute of Technology, Israel. 

Quantum mechanics provides us with an accurate set of rules to optimally predict the outcome   of 
experiments, however it is also infamous for being abstract and highly counter intuitive. Neural 
networks are powerful tools to extract non-trivial correlation in vast datasets, they recently 
outperformed state-of-the-art  techniques  in  language  translation,  medical  diagnosis or image 
recognitions. It remains to be seen if they can be of aid in learning non-intuitive dynamics such as ones 
found in quantum systems without any  prior.  Here,  we  demonstrate  that a recurrent neural  
network  can  be trained  in  real  time  to  infer  the  quantum  evolution of a superconducting qubit 
under non-trivial unitary evolution and continuous measurement  from raw experimental observations 
only. These predictions are exploited to extract the system Hamiltonian, measurement operators and 
parameters such as quantum efficiency with a greater accuracy than usual calibration methods. Also, 
the quantum tomography of an unknown initial state is performed without prior calibration. This work 
shows that quantum mechanics can be inferred from observation based on deep learning methods and 
can be readily extended to larger quantum system in a model independent fashion to enhance 
quantum sensing or QCVV. 

 
 
Michael J. Hartmann 
Neural-Network Approach to Dissipative Quantum Many-Body Dynamics 
In experimentally realistic situations, quantum systems are never perfectly isolated and the coupling to their 
environment needs to be taken into account. Often, the effect of the environment can be well 
approximated by a Markovian master equation. However, solving this master equation for quantum many-
body systems, becomes exceedingly hard due to the high dimension of the Hilbert space. Here we present 
an approach to the effective simulation of the dynamics of open quantum many-body systems based on 
machine learning techniques. We represent the mixed many-body quantum states with neural networks in 
the form of restricted Boltzmann machines and derive a variational Monte-Carlo algorithm for their time 
evolution and stationary states. We document the accuracy of the approach with numerical examples for a 
dissipative spin lattice system. 

 
 
Stefan Krastanov 
Stochastic Estimation of Dynamical Variables 
Stefan Krastanov1, Sisi Zhou1, Steven T. Flammia1,2, Liang Jiang1

 

Estimating the parameters governing the dynamics of a system is a prerequisite for its optimal control. We 
present a simple but powerful method that we call STEADY, for STochastic Estimation Algorithm for 
DYnamical variables, to estimate the Hamiltonian (or Lindbladian) governing a quantum system of a few 
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qubits. STEADY makes efficient use of all measurements and it saturates the information-theoretic limits for 
such an estimator. Importantly, it is inherently robust to state preparation and measurement errors. It is not 
limited to evaluating only a fixed set of possible gates, rather it estimates the complete Hamiltonian of the 
system. The estimator is applicable to any Hamiltonian that can be written as a piecewise-differentiable 
function and it can easily include estimators for the non-unitary parameters as well. Moreover, it can be 
extended to work on Stochastic Master Equations. At the heart of our approach is a stochastic gradient 
descent over the difference between experimental measurement and model prediction. Described in 
arxiv:1812.05120 
1 Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA 
2 Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney NSW, Australia 

 
 
Roger Melko 
Generative Models for Wavefunction Reconstruction 
The quantum wavefunction presents the ultimate "big data" problem in physics.  When a large number of 
qubits are highly entangled, the resulting complexity presents a daunting challenge for any computational 
strategy seeking to characterize the underlying quantum state.  Recently, a new computational toolbox 
based on modern machine learning techniques has been rapidly adopted into the field of quantum physics.  
In this talk, I will discuss how generative modelling can provide a practical route to approximate 
reconstruction of certain quantum wavefunctions.  Such methods raise important theoretical questions, the 
most pressing being how the structure of typical physical wavefunctions affects their learnability from 
experimentally-accessible measurement data. 

 
 
Evert van Nieuwenburg 
Integrating neural networks with Rydberg quantum simulators 
Recent theoretical studies have demonstrated the efficacy of neural network models in unsuper- vised 
reconstruction of pure and mixed quantum states. So far, however, these analyses have been restricted to 
training on error-free projective measurement results sampled from numerical algo- rithms. Here, we 
demonstrate an extension of this reconstruction technique to noisy experimental quantum simulator data, 
by expanding the network model to include an explicit description of the measurement process. We extract 
Restricted Boltzmann Machine (RBM) wavefunctions from data produced by a Rydberg atom array 
experiment in a single measurement basis, and apply a novel regularization technique for mitigating the 
effects of measurement errors in the training data. Re- constructions of modest complexity are able to 
capture one- and two-body observables not accessible to experimentalists, as well as more sophisticated 
observables such as the Renyi mutual information. Our results open the door to deeper integration of 
machine learning architectures with quantum hardware. 
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Mauro Paternostro 
Supervised learning of time-independent Hamiltonians for gate design 
I will illustrate the application of machine learning to a problem of “quantum gate synthesis”, i.e. the 
identification of the best suited configuration of interactions among the elements of a computational 
register that realises a desired unitary transformation. I will then show how the same logic can be applied to 
problems of quantum state engineering in large Hilbert spaces, illustrating a recent experiment performed 
on a quantum network involving a multimode setting where coherent absorption effects are emulated 
through a simple learning approach.  

 
 
Enrico Prati 
Deep reinforcement learning for steering qubits 
The diffusion of deep learning algorithms has boosted the research in several fields. The paradigm shift from 
knowledge-based to representation-based artificial intelligence has opened the chance to apply novel 
methods to physics. I review quantum computer architectures [1] and I show how to improve quantum 
computers  by exploiting deep reinforcement learning [2]. I present two practical examples of  how to steer  
a qubit by exploiting deep reinforcement learning, namely in the case of spatial coherent transport by 
adiabatic passage (CTAP) [3] of quantum states [4] and in the field of quantum compiling, managed by using 
A2C and TRPO deep reinforcement learning algorithms. By reverse engineering the network, it is possible to 
achieve better understanding of the physical process itself by identifying those physical quantities more 
contributing to the process. 
 
D. Rotta, F. Sebastiano, E. Charbon, and E. Prati, “Quantum information density scaling and qubit operation 
time constraints of cmos silicon-based quantum computer architectures,” npj Quantum Information, vol. 3, 
no. 1, p. 26, 2017. 
A. Bonarini, C. Caccia, A. Lazaric, and M. Restelli, “Batch reinforcement learning for controlling a mobile 
wheeled pendulum robot,” in IFIP International Conference on Artificial Intelligence in Theory and Practice, 
pp. 151–160, Springer, 2008. 
E. Ferraro, M. D. Michielis, M. Fanciulli, and E. Prati, “Coherent tunneling by adiabatic passage of an 
exchange-only spin qubit in a double quantum dot chain,” Phys. Rev. B, vol. 91, p. 075435., 2015. 
R. Porotti, D. Tamascelli, M. Restelli, and E. Prati, Coherent Transport of Quantum States by Deep 
Reinforcement Learning, arXiv:submit/2546122 [quant-ph] 20 Jan 2019 

 
 
Renato Renner 
Discovering physical concepts with neural networks 

Suppose that a neural network has been trained to successfully predict certain physical observations, e.g., 
the position of a planet at a particular time. Does this mean that the network has gained an understanding 
of the underlying physical concepts, such as Kepler’s laws? And, if yes, is there a way to extract this 
conceptual knowledge from the network? Once these questions can be answered in the affirmative, neural 
networks may become a valuable tool in research on the foundations of physics. In my talk, I will describe 
some very first steps we took in this direction.  One of these steps consists of the proposal of a neural 
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network architecture that models the physical reasoning process. The architecture enables the extraction of 
physical relations from the trained network. This is illustrated by several simple examples. 
The talk will be based on arXiv:1807.10300, which is joint work with Raban Iten, Tony Metger, Henrik 
Wilming, and Lidia del Rio 

 
 
Barry Sanders 
Learning for adaptive quantum control 
We develop a framework for connecting adaptive quantum control to machine learning, with applications to 
adaptive quantum metrology and to quantum logic gates in superconducting circuits and ion traps. Our 
framework suggests how to systematically study the intriguing topic of quantum reinforcement learning. 

 
 
Raffaele Santagati 
Learning the dynamics of quantum systems using statistical inference 
R. Santagati, A.A. Gentile, B. Flynn, S. Paesani, N. Wiebe, C. Granade, S. Knauer, J. Wang, S. Schmidt, L.P. 
McGuinness, J. Rarity, F. Jelezko, A. Laing 
Statistical inference algorithms have found a wide range of applications in quantum technologies thanks to 
their noise-resilience properties and flexibility. In this talk, I will present some of the most recent research, 
carried out at Bristol's Quantum engineering and technology labs (QETLabs), on the characterisation and 
optimisation of quantum technologies using Bayesian inference. 
Bayesian inference protocols, such as Quantum likelihood estimation (QLE) [1], have been experimentally 
applied to the characterisation of quantum systems [2] and the efficient estimation of magnetic fields using 
single spin quantum sensors [3]. Starting from these two demonstrations, we will explore new applications, 
considering those cases where prior knowledge of the model describing the system under study is limited [4, 
5]. 
Wiebe et al. Hamiltonian Learning and Certification Using Quantum Resources. Phys. Rev. Lett. 112, (2014) 
Wang et al. Experimental quantum Hamiltonian learning - Nature Physics 1, 149 (2017) 
Santagati et al. Magnetic-field-learning using a single electronic spin in diamond with one-photon-readout at 
room temperature - Phys. Rev. X (2019) 
Gentile et al. Characterising open quantum systems with Bayesian inference - manuscript in preparation 
(2019) 
Flynn et al. Exploring acyclic graphs for the study of quantum systems – manuscript in preparation (2019) 
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Aleksandr Alodzhants 
Speedup problem for quantum walks and quantum annealing algorithms implementation 
 
The speedup problem of algorithms implementation for quantum computing is one of extensively discussed now. 
Although quantum parallelism, in general, represents the necessary ingredient for acceleration of computational 
algorithms on quantum "hardware", sufficient criterion is still unknown in many cases. In my talk I discuss two 
important examples with quantum annealing, and quantum walks processes. 

First, I will focus on the quantum annealing problem that is relevant to the searching algorithm for the global 
minimum of the potential energy landscape consisting of a set of barriers and wells. In a purely classical (thermal) 
regime the bosonic particles cross barriers stochastically at finite temperature with the help of thermal activation 
process if the thermal energy is large enough. Contrary, in a quantum limit the same system undergoes quantum 
tunneling through the barrier. To be more specific we study the effect of a finite effective temperature on the 
coupling of quasi-equilibrium exciton-polariton condensates accounting for the competing thermal and quantum 
annealing effects [1]. We demonstrate the crossover from thermal to quantum annealing regime for a model system 
of two condensates localized by a W-shape potential. The transition between thermal activation (classical) and 
tunneling (quantum) regimes exhibits universal features of the first and second order phase transition phase 
transition depending on the potential energy landscape for polariton condensates that might be described as 
transition from the thermal to the quantum annealing regime. We show that improvement of the annealing 
algorithm in the quantum domain strongly depends on the particle number and governed by the ratio which depends 
on the effective action difference taken at a given temperature T. 

In another example, I discuss a new machine learning method to detect a speedup of quantum transport [2]. It is 
known that quantum particles propagate faster than classical analogs on certain graphs. However, there is not much 
known about the possible speedups on large scale graphs without apparent symmetries. In order to distinguish 
between quantum and classical regimes, we train a discriminative classifier that is a specially designed convolutional 
neural network (CQCNN). We generate training examples, each consisting of an adjacency matrix and a 
corresponding label ("classical" or "quantum"), by simulating the random walk dynamics of classical and quantum 
particles. By training CQCNN we show that the neural network is able to learn to classify the quantum speedup. First, 
we demonstrate that CQCNN learns to approximate given examples well by representing the quantum and classical 
properties of graphs in its weights. Second, we demonstrate that CQCNN correctly classifies not only previously 
unseen graphs of the same size, but also of larger sizes that were not used in the training phase. Our findings pave 
the way to an automated elaboration of novel large-scale quantum circuits utilizing quantum walk based algorithms, 
and to simulating high-efficiency energy transfer in biophotonics and material science. 

1. M. Lebedev, D. Dolinina, K.B. Hong, T. Lu, A.V. Kavokin, A.P. Alodjants. Exciton-polariton Josephson junctions at finite 
temperatures // Scientific Reports - 2017, Vol. 7, pp. 9515 
2. Alexey A. Melnikov, Leonid E. Fedichkin, and Alexander Alodjants, Detecting quantum speedup by quantum walk with 
convolutional neural networks, arXiv:1901.10632v1 [quant-ph] 30 Jan 2019 

 
 
Stefanie Czischek 
Emulating entanglement on temporally sampling deep neural networks 
Representing quantum spin-1/2 systems by artificial neural networks has gained a lot of interest recently. 
Neural network architectures can be implemented in a controlled manner by means of analog hardware 
setups. This opens the prospect that neuromorphic computers can be used to efficiently emulate quantum 
many-body systems. 
Here we choose a deep-neural-network ansatz to represent quantum spin-1/2 states to allow for 
measurements in orthogonal spin bases. We apply our scheme to small systems with non-classical features 
and show that quantum entanglement can be represented by the classical stochastic network. Using 
discrete Langevin-type dynamics to sample spin states from the network-encoded distribution, we simulate 
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a spiking neural network, which suggests implementation on neuromorphic hardware, such as the 
BrainScaleS system. 

 
 
Thomas Foesel 
Reinforcement Learning for Quantum Memory 
Machine learning with artificial neural networks is revolutionizing science. In the search for optimal control 
sequences, where the success can only be judged with some time-delay, reinforcement learning is the 
method of choice. The power of this technique has been highlighted by spectacular recent successes such as 
playing Go [1]. 
We have explored how a network-based "agent" can discover complete quantum-error-correction 
strategies, protecting a collection of qubits against noise [2]. These strategies require feedback adapted to 
measurement outcomes. Finding them from scratch without human guidance and tailored to different 
hardware resources is a formidable challenge due to the combinatorially large search space. Beyond its 
immediate impact on quantum computation, our work more generally demonstrates the promise of neural-
network-based reinforcement learning in physics. 
[1] D. Silver et al., Nature 550, 354–359 (2017) 
[2] T. Fösel, P. Tighineanu, T. Weiss, and F. Marquardt, Phys. Rev. X 8, 031084 (2018) 

 
 
Thomas Gabor, Christopher Roch 
QAR-Lab Site Report and the PlanQK Initiative 
The Quantum Applications and Research Laboratory (QAR-Lab) is situated at the chair for mobile and 
distributed systems at the LMU Munich. For the past years, we have been investigating near-term 
applications of quantum computing in corporation with industry partners like the Volkswagen DataLab and 
Airbus. We present current research regarding the connection of quantum computing and artificial 
intelligence, like enhancing the computation of Nash equilibria for multi-agent games using quantum 
annealing, Furthermore, we participate in the PlanQK initiative funded by the German ministry for 
commerce (BMWi) to build a platform for software developers and users, enabling the practical 
implementation and advancement of algorithms for quantum artificial intelligence and opening up the 
domain to the broad public. 
 

 
Mats Granath 
Error correction for the toric code using deep reinforcement learning 
We implement a quantum error correction algorithm for bit-flip errors on the toric code using deep 
reinforcement learning. An action-value Q-function encodes the discounted value of moving a defect 
(stabilizer error) to a neighboring site on the square grid depending on the full set of defects on the torus. 
The Q-function is represented by a deep convolutional neural network. 
We find performance which is close to, and for small error rates asymptotically equivalent to, that achieved 
by the Minimum Weight Perfect Matching algorithm for code distances up to $d=7$. The deep Q-network is 
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thus highly versatile in dealing with varying numbers of syndrome defects and may be applicable also to 
surface codes with boundaries and for different error models. 
 
 

Philip Andreasson, Joel Johansson, Simon Liljestrand, MG, arXiv:1811.12338 
 
 
Eliska Greplova 
Quantum Error Correction via Hamiltonian Learning 
Eliska Greplova, Agnes Valenti, Evert van Nieuwenburg, Sebastian Huber 
 
Successful implementation of error correction is imperative for fault-tolerant quantum computing. At 
present, the toric code, surface code and related stabilizer codes are state of the art techniques in error 
correction. 
Standard decoders for these codes usually assume uncorrelated single qubit noise, which can prove 
problematic in a general setting. 
In this work, we use the knowledge of topological phases of modified toric codes to identify the underlying 
Hamiltonians for certain types of imperfections. This Hamiltonian learning is employed to adiabatically 
remove the underlying noise and approach the ideal toric code Hamiltonian. This approach can be used 
regardless of correlations. Our method relies on a neural network reconstructing the Hamiltonian given as 
input a linear amount of expectation values. The knowledge of the Hamiltonian offers significant 
improvement of standard decoding techniques. 
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Fig.: Illustration of error correction via Hamiltonian learning technique. We consider imperfect toric code ground 
state. The imperfections are arbitrary σx (orange) and σz (blue) fields on every spin. Our machine learning driven 
protocol reconstructs the Hamiltonian corresponding to faulty ground state and determines the transition to the correct 
field-free one. (1)-(4) shows 4 iterations of the protocol. 

 
 
Niels Loerch 
Divergence of predictive model output as indication of phase transitions 
Frank  Schäfer and  Niels Lörch 
Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland 
(Dated: March 22, 2019) 
We introduce a new method to identify phase boundaries in physical systems. It is based on training a 
predictive model such as a neural network to infer a physical system’s parameters from its state. The 
deviation of the inferred parameters from the underlying correct parameters will be most susceptible and 
diverge maximally in the vicinity of phase boundaries. Therefore, peaks in the divergence of the model’s 
predictions are used as indication of phase transitions. Our method is applicable for phase diagrams of 
arbitrary parameter dimension and without prior information about the phases. Application to both the 
two-dimensional Ising model and the dissipative Kuramoto-Hopf model show promising results. 
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Alexey Melnikov 
Reinforcement learning in quantum optics experiments 
Quantum experiments push the envelope of our understanding of fundamental concepts in quantum 
physics. The designing of modern quantum experiments is difficult and often clashes with human intuition. 
In my talk, I will address the question of whether a reinforcement learning agent can propose novel 
quantum experiments. In our works [1,2] we answer this question in the affirmative in the context of 
quantum optics experiments, although our techniques are more generally applicable. I will talk about 
reinforcement learning and demonstrate how the projective simulation model can be used to design 
quantum experiments and discover experimental techniques by considering two examples. In the first 
example, a reinforcement learning agent learns to create high-dimensional entangled multiphoton states. As 
a result of this learning process, the agent designs experiments that create a variety of entangled states, 
improves the efficiency of their realization, and (re)discovers experimental techniques which are only now 
becoming standard in modern quantum optical experiments. In the second example, our reinforcement 
learning agent learns to design quantum experiments in which photon pairs violate a Bell inequality. As a 
result of this learning process, the agent finds several optical setups with high CHSH values for various 
detection efficiencies, which is an important step towards realistic device-independent quantum 
cryptography. Our findings highlight the possibility that machine learning could have a significantly more 
creative role in future quantum experiments. 
 
A.A. Melnikov, H. Poulsen Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A. Zeilinger, and H.J. Briegel. Active learning machine learns 
to create new quantum experiments. Proc. Natl. Acad. Sci. U.S.A., 115(6):1221, 2018. 

A.A. Melnikov, P. Sekatski, and N. Sangouard. Work in progress. 

 
 
Xiaotong Ni 
Neural Network Decoders for Large-Distance 2D Toric Codes (arXiv: 1809.06640) 
We still do not have the perfect decoders for topological codes that can satisfy all needs of different 
experimental setups. Recently, a few neural network based decoders have been studied, with the 
motivation that they can adapt to a wide range of noise models, and can easily run on dedicated chips 
without a full-fledged computer. The later feature might lead to fast speed and the ability to operate in low 
temperature. However, a question which has not been addressed in previous works is whether neural 
network decoders can handle 2D topological codes with large distances. In this work, we provide a positive 
answer for the 2D toric code. The structure of our neural network decoder is inspired by the renormalization 
group decoder. With a fairly strict policy on training time, when the bit-flip error rate is lower than 9% and 
syndrome extraction is perfect, the neural network decoder performs better when code distance increases. 
With a less strict policy, we find it is not hard for the neural decoder to achieve a performance close to the 
minimum-weight perfect matching algorithm. The numerical simulation is done up to code distance d=64. 
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Alessia Suprano 
Experimental Protocol for Quantum State Engineering through one-dimensional Quantum 
Walk 
One dimensional quantum walks can be used to engineer arbitrary quantum states. We imple- ment a state-
engineering protocol based on the controlled dynamics of one-dimensional Quan- tum Walk in the orbital 
angular momentum degree of freedom of single photons. We have demostrated the feasibility of such 
approach for engineering different qudit states in a six- dimensional space. 

 
 
Filippo Vicentini 
Variational neural network ansatz for steady-states in open quantum systems 
The state of a Markovian open quantum system is completely determined  by its density matrix which 
evolves according to a Lindblad master equation. When the system is composed by many interacting 
particles, the complexity arising from the many-body problem merges with the necessity to  represent  
mixed  states. In this  work  we  exploit  a  variational  ansatz  described  by  a  neural network to represent a 
generic nonequilibrium density matrix.  By deriving a variational principle, we  show that it is possible to 
define an iterative procedure where the network parameters are varied in order to minimize a  cost  
function  quantifying  the  distance  from  the  asymptotic  steady-state. Such a procedure, similar in spirit to 
supervised learning, can be performed efficiently by means of a Montecarlo sampling of the cost function. 
As a first application and proof-of-principle,  we  apply the method to the dissipative quantum transverse 
Ising model.
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