Quantum device measurement and tuning using machine learning Natalia Ares

University of Oxford

D. Lennon N. van Esbroeck G.A.D. Briggs E. A. Laird (Lancaster University) Machine learning: Device fabrication: M. Osborne D.M. Zumbühl L.C. Camenzind H. Moon Liuqi Yu V. Nguyen (University of Basel)

Vandersypen, L. M. K. et al. npj Quantum Inf. 3, 34 (2017)

The AI revolution

StarCraft II: DeepMind unveils latest game its AI plans to conquer

The AI research firm is teaming up with gaming company Blizzard to take on the real-time strategy game

Big data Massive computer power Powerful algorithms

Landing a virtual SpaceX rocket with Reinforcement Learning

Automated tuning

Baart, T. A. et al. Appl. Phys. Lett. 108, 213104 (2016)

Machine learning algorithm measuring and tuning a device in real time

Kalantre, S. S., et al. *npj* QI **5**, 6 (2019)

van Diepen, C.J., Appl. Phys. Lett. 113, 033101 (2018) Teske, J.D., Appl. Phys. Lett. 114, 133102 (2019)

Device measurements

Device tuning

Device measurements

Device tuning

Deep learning

a cat

Image recognition

Deep generative models

Deep learning

where $f_i(\mathbf{x}) = \max(W_i\mathbf{x} + \mathbf{b}_i, 0)$

Image recognition and deep generative models

Jun-Yan Zhu*, Taesung Park*, Phillip Isola, and Alexei A. Efros, ICCV 2017

NVIDIA, ICLR 2018

this bird is red with white and has a very short peak

Xu, T., Zhang, P., Huang, Q., Zhang, H., Gan, Z., Huang, X., & He, X. arXiv:1711.10485 (2017)

Reconstructions

Deep generative model

Deep generative model

Deep generative model

Reconstructions

Information theoretic models

Information gain map

Acquisition map

$r(n) = \frac{\text{unmeasured current gradient}}{\text{total current gradient}}$

Measurement

Acquisition map

Device measurements

Device tuning

Machine learning for quantum device tuning

Bayesian optimisation

Machine learning for quantum device tuning

Machine learning for quantum device tuning

Bias triangles!

10.6

12.7

Reinforcement learning for finer tuning

Deep Mind (2015)

25

Reinforcement learning for finer tuning

Summary

Efficient quantum dot measurements using machine learning

Efficient quantum dot tuning using machine learning

• Perspectives:

- Characterise and tune large quantum dot circuits
- Apply our findings to different qubit realisations

Thank you