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MACHINE LEARNING QUANTUM PHYSICS 

‣ Learning quantum phases of matter

‣ Tomographic recovery
‣ Learning descriptors in quantum materials

Carrasquilla, Melko, Nature Phys 13, 431 (2017)  
Huembeli, Dauphin, Wittek, Phys Rev B 97, 134109 (2018)  
van Nieuwenburg, Bairey, Refael, Phys Rev B 98, 060301 (2018)  
Schuett, Arbabzadah, Chmiela, Mueller, Tkatchenko, Nature Comm 8, 13890 (2017)  
Broecker, Carrasquilla, Melko, Trebst, Scientific Rep 7, 8823 (2017)



MACHINE LEARNING QUANTUM PHYSICS 

‣ This will have to be topological 

‣ Storage of quantum information needs a memory

Sweke, Kesselring, van Niewenburg, Eisert,arXiv:1810.07207 



MACHINE LEARNING QUANTUM PHYSICS 

‣ Main part: Fault-tolerant setting natural problem  
for reinforcement learning

‣ Bottleneck: The “decoder problem”

Sweke, Kesselring, van Niewenburg, Eisert,arXiv:1810.07207 



MACHINE LEARNING QUANTUM PHYSICS 

‣ Improved machine learning using near term quantum circuits
‣ Quantum inspired tensor network learning

Wittek, Quantum machine learning, Academic press (2014)  
Biamonte, Wittek, Pancotti, Rebentrost, Wiebe, Lloyd, Seth,Nature, 549, 195–202 (2017)  
Farhi, Neven, arXiv:1802.06002 
Melnikov, Nautrup, Hendrik Poulsen, Krenn, Dunjko, Tiersch, Zeilinger, Briegel, PNAS 115, 1221 (2018)  
Glasser, Pancotti, Cirac, arXiv:1806.05964 
Wiebe, Braun, Lloyd, Seth, Phys Rev Lett 109, 050505 (2012)  



MACHINE LEARNING QUANTUM PHYSICS 

‣ Outlook: Tensor networks and probabilistic graphical models 

‣ Comprehensive analysis of expressivity 

‣ Quantum-inspired data-driven learning of dynamical laws
Gelss, Klus, Eisert, Schuette, J Comput Nonlinear Dynam 14, 061006 (2019)

Glasser, Pancotti, Cirac, Eisert, Sweke, in preparation 



MACHINE LEARNING QUANTUM PHYSICS 

▸ What is missing? 

▸ New and convincing applications of (Q)ML

▸ A mathematical understanding



MACHINE LEARNING FOR  
TOPOLOGICAL QUANTUM MEMORIES
arXiv:1810.07207 and in progress
With Ryan Sweke, Markus Kesselring, Evert van Niewenburg 



SURFACE CODES

▸ Storage of quantum information



▸ Storage of quantum information has to be non-local to be protected

▸ Two types of stabilizers

XL

SURFACE CODES

Dennis, Kitaev, Preskill, JMP 43, 4452 (2002) 
Kitaev, Ann Phys 303, 2 (2003)

▸ Topological surface code



▸ Storage of quantum information has to be non-local to be protected

▸ Logical operators span code

XL

XL▸ From left to right

X X XX X

SURFACE CODES

Dennis, Kitaev, Preskill, JMP 43, 4452 (2002) 
Kitaev, Ann Phys 303, 2 (2003)

▸ Topological surface code
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▸ Storage of quantum information has to be non-local to be protected

▸ Topological surface code

▸ Logical operators span code

XL

▸ From top to bottom

Z

ZL

SURFACE CODES

Dennis, Kitaev, Preskill, JMP 43, 4452 (2002) 
Kitaev, Ann Phys 303, 2 (2003)



QUANTUM ERROR CORRECTION

▸ Costs energy to create pairs of anyons, but then they diffuse

XX

X

Z

Y

Dennis, Kitaev, Preskill, JMP 43, 4452 (2002) 
Kitaev, Ann Phys 303, 2 (2003)
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▸ (Imperfect) measurement of all  
stabilizers generates syndrome

▸ Need to correct (or track)

▸ Many errors result in same 
syndrome - paths are not visible

QUANTUM ERROR CORRECTION

Dennis, Kitaev, Preskill, JMP 43, 4452 (2002) 
Kitaev, Ann Phys 303, 2 (2003)



DECODING PROBLEM AS A BOTTLENECK

▸ Need to correct (or track)

Fowler, Goyal,  Q Inf Comp 9, 721 (2009)  
Wootton, Loss PRL 109, 160503 (2012) 
Bravyi, Haah,  PRL 111, 200501 (2013)  
Duclos-Cianci, Poulin, PRL 104, 050504 (2010)  
Herold, Campbell, Eisert, Kastoryano, Nature PJ Quant Inf 1, 15010 (2015)

▸ Decoding problem: Given the syndrome (             bits) - from  
faulty measurements - identify the homology class and find  
operations to bring the state back to the code space

O(L2)



System size

Decoding time

Lookup table

Leaves significant space for 
improvement with machine learning?

MACHINE LEARNING?

Minimum weight  
perfect matching O(L4.7)
Sankiwski, Theo Comp Sc 410, 4480 (2009)



System size

Decoding time

Lookup table

Leaves significant space for 
improvement with machine learning?

▸ For perfect measurements, supervised  
learning works well

Torlai, Melko, Phys Rev Lett 119, 030501 (2017)  
Krastanov, Jiang, Scientific Reports 7, 11003 (2017)  
Varsamopoulos, Criger, Bertels, Quant Sc Tech 3, 1 (2017) 
Breuckmann, Ni, arXiv:1710.09489 
Maskara, Kubica, Jochym-O’Connor, arXiv:1802.08680

MACHINE LEARNING?

Minimum weight  
perfect matching O(L4.7)
Sankiwski, Theo Comp Sc 410, 4480 (2009)

▸ BUT: FAULT TOLERANCE INTRINSICALLY NOT CAPTURED



REINFORCEMENT DECODING

Sweke, Kesselring, van Nieuwenburg,,Eisert, arXiv:1810.07207

CRt

CSt

At

St+1

Rt+1

▸ Reinforcement learning approach

Tt

Tt+1

▸ State

▸ Action

▸ Game over

St = syndrome

At 2 {1, X1, . . . , Xd2}

▸ RewardRt =

⇢
1, if no anyons ^ no logical errors
0, otherwise

Tt =

⇢
True, if St can be decoded,
False, otherwise



▸ Environment described by discrete Markov chain

▸ Goal is to learn a policy

p(s0, r0|s, a) := Pr(St = s0, Rt = r0|St�1 = s,At=1 = a)

⇡(a|s)

REINFORCEMENT LEARNING

▸ Value functions are of key importance, for 

▸ Can place order over policies,

▸ Want to learn optimal policy

v⇡(s) = E⇡(Gt|St = s) = E⇡

 
terminalX

k=0

�kRt+k+1|St = s

!

q⇡(s, a) = E⇡(Gt|St = s,At = a)

⇡ > ⇡0 , v⇡(s) > v⇡0(s) 8s 2 S

⇡⇤

� 2 (0, 1)



▸ Deep Q-learning seeks to parameterize Q with a neural network

loss = ypred � ytrue

= q(St, At)� (Rt+1 + �max
a0

q(St+1, a
0))

▸ Optimal Q function is fixed point of Bellman's equation

▸ Can create a loss function for iterative Q-learning

REINFORCEMENT LEARNING

q⇤(s, a) = E(Rt+1 + �max
a0

q⇤(St+1, a
0)|St = s,At = a)



LESSON

▸ Results are very encouraging (bit-flip and depolarizing noise)

Sweke, Kesselring, van Nieuwenburg, Eisert, arXiv:1810.07207  
See also Baireuther, Caio, Criger, Beenakker, O’Brien, New J Phys 21, 013003 (2019) 



LESSON

Sweke, Kesselring, van Nieuwenburg,,Eisert, arXiv:1810.07207  
Trotta, Sweke, Kesselring, van Nieuwenburg,,Eisert, in preparation

▸ Lesson: The fault tolerant decoding problem is  
much suitable to be tackled by reinforcement learning

▸ Now: Multi-agent setting and RG decoders

▸ Machine-learning for lattice surgery and fault tolerant computing

▸ Gate-level noise



OUTLOOK: TENSOR NETWORKS IN  
QUANTUM INSPIRED LEARNING

THE CREATIVE IDIOT, THE WISE FOOL AND THE GREY-HAIRED BABY

J Comput Nonlinear Dynam 14, 061006 (2019)  and in progress



LEARNING PROBABILITY DISTRIBUTIONS WITH TENSOR NETWORK

‣Probabilistic graphical models ‣Tensor networks

‣Bayesian network/directed 
acyclic graphical model

▸ HOW CAN PROBABILITY DISTRIBUTIONS  
BE CAPTURED AS MPS?

Glasser, Pancotti, Cirac, arXiv:1806.05964 
Many others



Glasser, Pancotti, Cirac, Eisert, Sweke, in preparation 

LEARNING PROBABILITY DISTRIBUTIONS WITH TENSOR NETWORK

‣MPS of bond dimension (BD) r, 
square of MPS of BD r, purification  
of BD r, lots ot other “ranks”

‣Comprehensive analysis of efficient 
embeddings into each other

▸ Lesson: Expressivity of probability distributions  
with MPS can be largely addressed



▸ HOW CAN ONE LEARN DYNAMICAL  
LAWS FROM DATA?

LEARNING DYNAMICAL LAWS FROM DATA



‣Learn dynamical laws from data

LEARNING DYNAMICAL LAWS FROM DATA

d

dt
X(t) = F (X(t)) = Y (t)



‣Express functions in terms of a dictionary { 1, . . . , p}

 (X) = [ 1(X) . . . p(X)]T

‣Transformed data matrix

‣Determine the coefficient matrix 
 

   such that the cost function is minimized

 (X ) = [ 1(X1) . . . (Xm)]

⌅ = [⇠1 . . . ⇠d]

kY � ⌅T (X )k2

LEARNING DYNAMICAL LAWS FROM DATA

+�k⌅k1

Brunton, Proctor, Kutz, Proc Natl Ac Sc 113, 3932 (2016)



‣Failing for large systems

‣Express functions in terms of a dictionary { 1, . . . , p}

 (X) = [ 1(X) . . . p(X)]T

‣Transformed data matrix

‣Determine the coefficient matrix 
 

   such that the cost function 

 
   is minimized

 (X ) = [ 1(X1) . . . (Xm)]

⌅ = [⇠1 . . . ⇠d]

kY � ⌅T (X )k2

‣SINDy finds a sparse coefficient matrix

‣E.g., recovers Chua’s circuit well

‣Highly useful in biology etc, for small systems

LEARNING DYNAMICAL LAWS FROM DATA

CAN TENSOR NETWORK METHODS HELP?
Brunton, Proctor, Kutz, Proc Natl Ac Sc 113, 3932 (2016)



TENSOR NETWORK RECOVERY

‣ Idea: Represent     and          as (real) matrix-product states  ⌅  (X )

‣ Solve                                   directly in MPS space min
⌅

kY � ⌅T (X )k2

‣ Steps such as pseudo-inverse can be efficiently computed,  
for     data points

O(mD
2)

m

Gelss, Klus, Eisert, Schuette, J Comput Nonlinear Dynam 14, 061006 (2019)



TENSOR NETWORK RECOVERY

‣Works well in practice: E.g., Fermi-Pasta-Ulam-Tsingou problem 

  with dictionary                     per site {1, x, x2, x3}

Gelss, Klus, Eisert, Schuette, J Comput Nonlinear Dynam 14, 061006 (2019)



TENSOR NETWORK RECOVERY

‣ Trees, PEPS, other tensor network dictionaries?

‣Recovery guarantees, correlation measures?

‣ In progress with Google: Quantum dynamical learning

Gelss, Klus, Eisert, Schuette, J Comput Nonlinear Dynam 14, 061006 (2019)

▸ Lesson: Tensor networks give encouraging 
results when learning dynamical laws



SUMMARY

▸ Reinforcement learning can 
decode fault tolerant memories

Thanks for your attention
http://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-eisert/

▸ Tensor networks  
in learning


