QUANTUM

MACHINE LEARNING JENS EISERT, FU BERLIN

JOINT WORK WITH RYAN SWEKE, MARKUS KESSELRING,EVERT P. L. VAN NIEUWENBURG AND OTHERS.

MACHINE LEARNING ------ QUANTUM PHYSICS

Learning quantum phases of matter

- Tomographic recovery
- Learning descriptors in quantum materials

Carrasquilla, Melko, Nature Phys 13, 431 (2017) Huembeli, Dauphin, Wittek, Phys Rev B 97, 134109 (2018) van Nieuwenburg, Bairey, Refael, Phys Rev B 98, 060301 (2018) Schuett, Arbabzadah, Chmiela, Mueller, Tkatchenko, Nature Comm 8, 13890 (2017) Broecker, Carrasquilla, Melko, Trebst, Scientific Rep 7, 8823 (2017)

MACHINE LEARNING -----

QUANTUM PHYSICS

Storage of quantum information needs a memory

This will have to be topological

Sweke, Kesselring, van Niewenburg, Eisert, arXiv:1810.07207

MACHINE LEARNING ------ QUANTUM PHYSICS

Bottleneck: The "decoder problem"

Main part: Fault-tolerant setting natural problem for reinforcement learning

Sweke, Kesselring, van Niewenburg, Eisert, arXiv:1810.07207

MACHINE LEARNING ------ QUANTUM PHYSICS

- Improved machine learning using near term quantum circuits
- Quantum inspired tensor network learning

Wittek, Quantum machine learning, Academic press (2014)
Biamonte, Wittek, Pancotti, Rebentrost, Wiebe, Lloyd, Seth, Nature, 549, 195–202 (2017)
Farhi, Neven, arXiv:1802.06002
Melnikov, Nautrup, Hendrik Poulsen, Krenn, Dunjko, Tiersch, Zeilinger, Briegel, PNAS 115, 1221 (2018)
Glasser, Pancotti, Cirac, arXiv:1806.05964
Wiebe, Braun, Lloyd, Seth, Phys Rev Lett 109, 050505 (2012)

Outlook: Tensor networks and probabilistic graphical models

Comprehensive analysis of *expressivity*

Glasser, Pancotti, Cirac, Eisert, Sweke, in preparation

Quantum-inspired data-driven learning of dynamical laws

Gelss, Klus, Eisert, Schuette, J Comput Nonlinear Dynam 14, 061006 (2019)

MACHINE LEARNING

QUANTUM PHYSICS

What is missing?

- New and convincing applications of (Q)ML
- A mathematical understanding

MACHINE LEARNING FOR TOPOLOGICAL QUANTUM MEMORIES arXiv:1810.07207 and in progress With Ryan Sweke, Markus Kesselring, Evert van Niewenburg

Storage of quantum information

Storage of quantum information has to be non-local to be protected

- Topological surface code
- Two types of stabilizers

Storage of quantum information has to be non-local to be protected

- Topological surface code
- Logical operators span code
- From left to right X_L

Storage of quantum information has to be non-local to be protected

- Topological surface code
- Logical operators span code
- From top to bottom Z_L

Costs energy to create pairs of anyons, but then they diffuse

Need to correct (or track)

- (Imperfect) measurement of all stabilizers generates syndrome
- Many errors result in same syndrome - paths are not visible

Need to correct (or track)

Decoding problem: Given the syndrome (O(L²) bits) - from faulty measurements - identify the homology class and find operations to bring the state back to the code space

> Fowler, Goyal, Q Inf Comp 9, 721 (2009) Wootton, Loss PRL 109, 160503 (2012) Bravyi, Haah, PRL 111, 200501 (2013) Duclos-Cianci, Poulin, PRL 104, 050504 (2010) Herold, Campbell, Eisert, Kastoryano, Nature PJ Quant Inf 1, 15010 (2015)

Decoding time

Minimum weight perfect matching $O(L^{4.7})$

Sankiwski, Theo Comp Sc 410, 4480 (2009)

Leaves significant space for improvement with machine learning?

Lookup table

For perfect measurements, **supervised learning** works well

> Torlai, Melko, Phys Rev Lett 119, 030501 (2017) Krastanov, Jiang, Scientific Reports 7, 11003 (2017) Varsamopoulos, Criger, Bertels, Quant Sc Tech 3, 1 (2017) Breuckmann, Ni, arXiv:1710.09489

BUT: FAULT TOLERANCE INTRINSICALLY NOT CAPTURED

REINFORCEMENT DECODING

Reinforcement learning approach

- State $S_t =$ syndrome
- Action $A_t \in \{1, X_1, \dots, X_{d^2}\}$
- $Reward R_t = \begin{cases} 1, & \text{if no anyons } \land \text{ no logical errors} \\ 0, & \text{otherwise} \end{cases}$

• Game over $T_t = \begin{cases} True, & \text{if } S_t \text{ can be decoded}, \\ False, & \text{otherwise} \end{cases}$

Sweke, Kesselring, van Nieuwenburg, Eisert, arXiv:1810.07207

Environment described by discrete Markov chain

$$p(s', r'|s, a) := \Pr(S_t = s', R_t = r'|S_{t-1} = s, A_{t-1} = a)$$

- Goal is to learn a policy $\pi(a|s)$
- Value functions are of key importance, for $\gamma \in (0, 1)$

$$v_{\pi}(s) = \mathbb{E}_{\pi}(G_t|S_t = s) = \mathbb{E}_{\pi}\left(\sum_{k=0}^{\text{terminal}} \gamma^k R_{t+k+1}|S_t = s\right)$$
$$a_{\pi}(s, a) = \mathbb{E}_{\pi}(G_t|S_t = s, A_t = a)$$

• Can place order over policies, $\pi > \pi' \Leftrightarrow v_{\pi}(s) > v_{\pi'}(s) \forall s \in S$

• Want to learn optimal policy π^*

Optimal Q function is fixed point of Bellman's equation

$$q_*(s,a) = \mathbb{E}(R_{t+1} + \gamma \max_{a'} q_*(S_{t+1},a') | S_t = s, A_t = a)$$

Can create a loss function for iterative Q-learning

$$pss = y_{pred} - y_{true} = q(S_t, A_t) - (R_{t+1} + \gamma \max_{a'} q(S_{t+1}, a'))$$

Deep Q-learning seeks to parameterize Q with a neural network

Results are very encouraging (bit-flip and depolarizing noise)

Sweke, Kesselring, van Nieuwenburg, Eisert, arXiv:1810.07207 See also Baireuther, Caio, Criger, Beenakker, O'Brien, New J Phys 21, 013003 (2019)

- Lesson: The fault tolerant decoding problem is much suitable to be tackled by reinforcement learning
 - Now: Multi-agent setting and RG decoders
 - Gate-level noise
 - Machine-learning for lattice surgery and fault tolerant computing

Sweke, Kesselring, van Nieuwenburg, Eisert, arXiv:1810.07207 Trotta, Sweke, Kesselring, van Nieuwenburg, Eisert, in preparation

OUTLOOK: TENSOR NETWORKS IN QUANTUM INSPIRED LEARNING

J Comput Nonlinear Dynam 14, 061006 (2019) and in progress

Probabilistic graphical models

 Bayesian network/directed acyclic graphical model

Tensor networks

Glasser, Pancotti, Cirac, arXiv:1806.05964 Many others

HOW CAN PROBABILITY DISTRIBUTIONS BE CAPTURED AS MPS?

MPS of bond dimension (BD) r, square of MPS of BD r, purification of BD r, lots ot other "ranks"

	1					
	$r_{\mathbb{R}}$	$r_{\mathbb{R}_{\geq 0}}$	$r_{\mathbb{R}^2}$	$r_{\mathbb{C}^2}$	$r_{\mathbb{R}_{\infty}}$	$r_{\mathbb{C}_{\infty}}$
$r_{\mathbb{R}}$	=	$\leq x$	$\leq x^2$	$\leq x^2$	$\leq x^2$	$\leq x^2$
$r_{\mathbb{R}>0}$	No	=	No	No	No	No
$r_{\mathbb{R}^2}$	No	No	=	No	No	No
$r_{\mathbb{C}^2}$	No	?	$\leq x$	=	?	?
$r_{\mathbb{R}_{\infty}}$	No	$\leq x$	$\leq x$	$\leq 2x$	=	$\leq 2x$
$r_{\mathbb{C}_{\infty}}$	No	$\leq x$	$\leq x$	$\leq x$	$\leq x$	=
	-					

 Comprehensive analysis of efficient embeddings into each other

Lesson: Expressivity of probability distributions with MPS can be largely addressed

HOW CAN ONE LEARN DYNAMICAL LAWS FROM DATA?

Learn **dynamical laws** from data

$$\frac{d}{dt}X(t) = F(X(t)) = Y(t)$$

Express functions in terms of a **dictionary** $\{\psi_1, \dots, \psi_p\}$ $\Psi(X) = [\psi_1(X) \dots \psi_p(X)]^T$

Transformed data matrix

$$\Psi(\mathcal{X}) = [\Psi_1(X_1) \dots \Psi(X_m)]$$

Determine the **coefficient matrix**

$$\Xi = [\xi_1 \dots \xi_d]$$

such that the **cost function** is minimized

$$\|\mathcal{Y} - \Xi^T \Psi(\mathcal{X})\|_2 + \lambda \|\Xi\|_1$$

Brunton, Proctor, Kutz, Proc Natl Ac Sc 113, 3932 (2016)

Idea: Represent Ξ and $\Psi(\mathcal{X})$ as (real) matrix-product states

- Solve $\min_{\Xi} \|\mathcal{Y} \Xi^T \Psi(\mathcal{X})\|_2$ directly in MPS space
- Steps such as **pseudo-inverse** can be efficiently computed, $O(mD^2)$ for m data points

TENSOR NETWORK RECOVERY

Works well in practice: E.g., Fermi-Pasta-Ulam-Tsingou problem

with dictionary $\{1, x, x^2, x^3\}$ per site

Lesson: Tensor networks give encouraging results when learning dynamical laws

- **Trees**, **PEPS**, other tensor network dictionaries?
- Recovery guarantees, correlation measures?
- In progress with **Google**: Quantum dynamical learning

- Reinforcement learning can decode fault tolerant memories
- Tensor networks in learning

Thanks for your attention

http://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-eisert/