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A Quantum Information Processing Experimentintro
The Quantum Slot Machine
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Preparation Evolution+
Continuous Monitoring

Measurement

continuous
measurement

« POVM » 
measurement 
backaction + 

coherent 
dynamics

Stochastic Quantum Evolution

Physical parameters have to be separately calibrated and fine-tunedL.S. Martin



Supervised Deep Learning learns

continuous
measurement

If one have a large set of instances

no matter how complicated the problem is

•  language translation 
•  image & speech recognition

•  medical diagnosis 
•  LHC signal processing

intro Inferring Quantum Dynamics
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Superconducting circuits 
provides           instances                                                   per minutes 

Deep neural network can learn

with no prior on quantum mechanics 

if       spans a complete set of observable, 
     is equivalent to the wave-function

Heralding ReadoutPrep TomoEvolution

Inferring Quantum Dynamics
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Inferring Quantum Dynamics
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Circuit Quantum Electro-Dynamics

energyenergy

dispersive coupling

Circuits



Physical Implementation

1 cm

Circuits

� ⇠ 2⇡ ⇥ 0.3 MHz
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Dispersive Measurement



Experiment Josephson Amplifier

average measurement outcome



STRONG vs. WEAK MEASUREMENT

Weak

Trajectories Strong vs Weak Measurement

weak interaction

projective
measurement

average measurement outcome

« Partial-Measurement Backaction and Nonclassical  
Weak Values in a Superconducting Circuit »  
Groen et al., PRL 2013 (Delft)

POVM : ⌦̂Vt
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What does the detector signal tell us?

Homodyne Voltage 

Bloch sphere

Quantum TrajectoriesTrajectories

Bayesian inference

Generalized 
measurement 
operator



Experimental 
data:

K. Murch et al., Nature 502 211 (2013).

Quantum TrajectoriesTrajectories



Weak Measurement of a Driven QubitTrajectories

JPA
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stochastic 
quantum evolution

preparation measurement

JPA

non-QND
measurement

Weak Measurement of a Driven Qubit

Recurent Neural Network

32 neurones per layer
5,000 weights parameters
0.8 ms of GPU training per trace

Experiment
1.5 millions repetitions
at a rate of 0.5 ms

Long Short Term Memory

Trajectories



Deep Neural Network

hidden statesinput state output state

input output

each layer is represented
as a vector of neurones

weight matrix
connecting each layer

sigmoid
activation function

neurones
biases

Neural Network are  
differentiable computers

Neural Nets



Neural Nets

hidden statesinput state output state

input output

gradient descent optimization

loss

(backpropagation)
data

Cross-entropy loss function

minimum when the distribution of         matches with

Deep Neural Network

measurement bit in the basis b prediction in the basis b
y 2 {0, 1}



Neural Nets

hidden statesinput state output state

input output

gradient descent optimization

loss

(backpropagation)
data

updating all the weight matrices with gradient descent of the loss function

backward propagation 

(the chain rule for differentiation translates in matrix multiplications)

Deep Neural Network



Neural Nets Deep Neural Network

hidden statesinput state output state

input output

gradient descent optimization

loss

(backpropagation)
tomography



Neural Nets Neural Networks Architectures

Time series
• text generation 
• speech recognition (Amazon Alexa…) 
• language translation (Google translate…)

Recurrent Neural NetworkConvolutional Neural Network

Spatially ordered data
• Image recognition

space-like correlations time-like causal correlations



Neural Nets Recurrent Neural Networks

preparation settings 
inputed in ~h0



Neural Nets Recurrent Neural Networks

loss

data

gradient descent
optimization



Neural Nets Recurrent Neural Networks: Example

[Karpathy, Andrej, Justin Johnson, and Li Fei-Fei. "Visualizing and understanding recurrent networks. » 
arXiv preprint arXiv:1506.02078 (2015).]

character-level language modeling 
trained on « War and Peace »input: current letter

output: most probable
                next letter

The sole importance of the crossing of the Berezina lies in the fact
that it plainly and indubitably proved the fallacy of all the plans for 
cutting off the enemy's retreat and the soundness of the only possible 
line of action- -the one Kutuzov and the general mass of the army 
demanded- -namely, simply to follow the enem « y »?



input: current letter

output: most probable
                next letter

Neural Nets

[Karpathy, Andrej, Justin Johnson, and Li Fei-Fei. "Visualizing and understanding recurrent networks. » 
arXiv preprint arXiv:1506.02078 (2015).]

Long range dependencies in RNN

Recurrent Neural Networks: Example



RNN Learning Stochastic Quantum Dynamics

Recurent Neural Network

32 neurones per layer
5,000 weights parameters
0.8 ms of GPU training per trace

Experiment
1.5 millions repetitions
at a rate of 0.5 ms

Long Short Term Memory

Prediction

stochastic 
quantum evolution

preparation measurement

JPA

quantum trajectory

Training set 
6 preparation settings 
6 measurement settings 
20 experiment durations

LSTM babysitting 
batchsize 1024 
10 epochs 
learning rate 10^{-3}->10^{-6} 
dropout 0.3->0

P (y|Z)
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Neural Weights Update

Prediction
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stochastic 
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Recurrent Neural Network

JPA

RNN Learning Stochastic Quantum Dynamics

Recurent Neural Network

32 neurones per layer
5,000 weights parameters
0.8 ms of GPU training per trace

Experiment
1.5 millions repetitions
at a rate of 0.5 ms

Long Short Term Memory

Training set 
6 preparation settings 
6 measurement settings 
20 experiment durations
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Learning Quantum MechanicsRNN

continuous
monitoring

prep

meas

probability
probability



ResultsTraining ValidationRNN

[Observing single quantum trajectories of 
a superconducting quantum bit 
Murch, Weber, Macklin, Siddiqi - Nature (2013)]

counts

training validation

Predictions
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RNN

0.85



ResultsTraining ValidationRNN

[Observing single quantum trajectories of 
a superconducting quantum bit 
Murch, Weber, Macklin, Siddiqi - Nature (2013)]

counts

training validation

Predictions
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Training ValidationRNN



Machine PredictionRNN



Parameter Estimation & SensingRNN

JPA prediction distribution



Parameter Estimation & SensingRNN

JPA Drift map

Dissipative evolution



Parameter Estimation & SensingRNN

Dephasing rate

Rabi frequency

JPA Drift map

Dissipative evolution



Parameter Estimation & SensingRNN

JPA Drift map Diffusion map

quantum efficiency

Dephasing rate

Rabi frequency

Measurement back-actionDissipative evolution



Prediction and retrodiction with bi-directional RNN

Prediction

Retrodiction

[Prediction and retrodiction for a continuously 
monitored superconducting qubit 
D. Tan, S. Weber, I. Siddiqi, K. Mølmer, K. W. Murch PRL (2015)]

bi-RNN

[The two-state vector formalism of quantum mechanics 
Y Aharonov, L Vaidman (2002)]

stochastic 
quantum evolution

preparation measurement
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Prediction

Retrodiction
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Prediction and retrodiction with bi-directional RNN

Prediction

Retrodiction

[Prediction and retrodiction for a continuously 
monitored superconducting qubit 
D. Tan, S. Weber, I. Siddiqi, K. Mølmer, K. W. Murch PRL (2015)]

bi-RNN

[The two-state vector formalism of quantum mechanics 
Y Aharonov, L Vaidman (2002)]

stochastic 
quantum evolution

preparation measurement

continuous
monitoring

probability
forward prediction

backward prediction

probability

To
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Backward Predictions



State Tomography from Retrodictionbi-RNN

Retrodiction

maximum likelihood 
reconstruction 
from 5000 trajectories

[Quantum state tomography with noninstantaneous measurements, 
imperfections, and decoherence 
Six, Campagne-Ibarcq, Dotsenko, Sarlette, Huard, and Rouchon PRA (2016)]

0

meas.
prep

prep meas.

continuous
monitoring

prediction

retrodiction
estimation
(95% confidence)

initial state



conclusion

Preparation Evolution Measurement

•  Model independent validation of quantum trajectories  
beyond Markov approximation 

• Efficient extraction of physical parameters 
- Quantum efficiency 
- Quantum state tomography

Black Box Experiement



conclusion

Black box quantum machines will require black box models.

Big Quantum Machines



conclusion

Noise models are 
not precisely known 
a priori: 
- non-markovian noise 
- Correlated errors

Big Quantum Machines

« Neural Decoder for Topological Codes » 
Torlai et al., PRL 2018

« Machine-learning-assisted correction of 
correlated qubit errors in a topological code »  
Baireuther et al., arXiv

« Reinforcement Learning with  
Neural Networks for Quantum Feedback »  
Fösel et al., PRX (2018)

« Solving the quantum many-body problem  
with artificial neural networks » 
Carlea, Troyer. Science (2017)

Quantum many-body problem

Efficient design and decoding  
of Quantum Error Correction

Neural Networks 
can help to identify 
spatial and temporal 
hidden correlation

« Machine learning phases of matters »  
Carrasquilla, Melko. Nature Physics (2017)
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intro Quantum Master Equation

Preparation Evolution+
Continuous Monitoring

Measurement

continuous
measurement

with stochastic master equation

and Each of these terms has to be fine-tuned and separately calibrated


