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PRX 8, 031084 T. Fösel, MPL Erlangen 3/19



e. g.: manipulating
quantum systems

X

smart

X

X

X

unexperienced (random)

reinforcement learning
(no human guidance!)
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Quantum error correction: the RL approach
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Reinforcement learning example: Go

[Silver et al., Nature 529, 484-489 (2016)] [Silver et al., Nature 550, 354-359 (2017)]
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Supervised learning vs. reinforcement learning
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(Model-free) reinforcement learning: basic setup
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Prior applications of reinforcement learning in physics
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FIG. 1: (a) Phase diagram of the quantum state prepa-
ration problem for the qubit in Eq. (1) vs. protocol du-
ration T , as determined by the order parameter q(T )
(red) and the maximum possible achievable fidelity Fh(T )
(blue), compared to the variational fidelity Fh(T ) (black,
dashed). Increasing the total protocol time T , we go
from an overconstrained phase I, through a glassy phase
II, to a controllable phase III. (b) Left: the infidelity
landscape is shown schematically (green). Right: the
optimal bang-bang protocol found by the RL agent at
the points (i)–(iii) (red) and the variational protocol [35]

(blue, dashed).

paradigm of multi-starting local gradient optimizers [47].
Unlike these methods, the RL agent progressively learns
to build a model of the optimization landscape in such
a way that the protocols it finds are stable to sampling
noise. In this regard, RL-based approaches are particu-
larly well-suited to work with experimental data [48, 49]
and, unlike many optimal control methods, they do not
require explicit knowledge of local gradients of the con-
trol landscape [35, 45]. This o↵ers a considerable advan-

tage in controlling realistic systems where constructing a
reliable e↵ective model is infeasible, for example due to
disorder or dislocations.

To manipulate the quantum system, our computer
agent constructs piecewise-constant protocols of dura-
tion T by choosing a drive protocol strength hx(t) at
each time t = n�t, n = {0, 1, · · · , T/�t}, with �t the
time-step size. In order to make the agent learn, it is
given a reward for every protocol it constructs – the fi-
delity Fh(T ) = |h ⇤| (T )i|2 for being in the target state
after time T following the protocol hx(t) under unitary
Schrödinger evolution. The goal of the agent is to max-
imize the reward in a series of attempts. Deprived of
any knowledge about the underlying physical model, the
agent collects information about already tried protocols,
based on which it constructs new, improved protocols
through a sophisticated biased sampling algorithm [35].
In realistic applications, one does not have access to in-
finite control fields; for this reason, we restrict to fields
hx(t) 2 [�4, 4], see Fig. 1b. Pontryagin’s maximum prin-
ciple further allows us to focus on bang-bang protocols
(Fig. 1b, red), where hx(t) 2 {±4}, although we verified
that RL also works for quasi-continuous protocols with
many di↵erent steps �hx [35]. Even though there is only
one control field, the space of available protocols grows
exponentially with the inverse step size �t�1.

Control Phases of Constrained Qubit Manipulation.—
To benchmark the application of RL to physics problems,
consider first a two-level system described by

H(t) = �Sz � hx(t)Sx, (1)

where S↵, are the spin-1/2 operators. This Hamil-
tonian comprises both integrable many-body and non-
interacting translational invariant systems, such as the
transverse-field Ising model, graphene and topological in-
sulators. The initial | ii and target | ⇤i states are chosen
as the ground states of (1) at hx = �2 and hx = 2, re-
spectively. Although there exists an analytical solution to
solve for the optimal protocol in this case [46], it does not
generalize to non-integrable many-body systems. Thus,
studying this problem using RL serves a two-fold pur-
pose: (i) we benchmark the protocols obtained by the
RL agent demonstrating that, even though RL is a com-
pletely model-free algorithm, it still finds the physically
meaningful solutions by constructing a minimalistic e↵ec-
tive model on-the-fly. The learning process is shown in
this Movie; (ii) We reveal an important novel perspective
on the complexity of quantum state preparation which,
as we show below, generalizes to many-particle systems.

For fixed total ramp time T , the infidelity hx(t) 7!
Ih(T ) = 1 � Fh(T ) represents a “potential landscape”,
the global minimum of which corresponds to the opti-
mal driving protocol. For bang-bang protocols, the prob-
lem of finding the optimal protocol becomes equivalent
to finding the ground state configuration of a classical
Ising model with complicated interactions. We map out
the landscape of local infidelity minima {h↵

x (t)} using
SD, starting from random bang-bang protocol configu-

A CB D

Fig. 3. Experimental setups frequently used by the PS agent. (A) Local
parity sorter. (B) Nonlocal parity sorter (as discovered by the program).
(C) Nonlocal parity sorter in the Klyshko wave front picture (53), in which
the paths a and d are identical to the paths b and c, respectively. (D) Setup to
increase dimensionality of photons. (A–D) In a simulation of 100 agents, the
highest-weighted subsetups were 11 times experiment A, 22 times experi-
ment B, and 43 times experiment D was part of the highest-weighted sub-
setup. Only in 24 cases were other subsetups the highest weighted.

experiments designed by the basic PS agent (solid blue curve)
and the PS agent with action composition (19) (dashed blue
curve). Action composition allows the agent to construct new
composite actions from useful optical setups (i.e., placing mul-
tiple elements in a fixed configuration), thereby autonomously
enhancing the toolbox (see Projective Simulation for details). It is
a central ingredient for an AI to exhibit even a primitive notion of
creativity (50) and was also used in ref. 12 to augment automated
random search. For comparison, we provide the total number of
interesting experiments obtained by automated random search
with and without action composition (Fig. 2B, solid and dashed
red curves). As we will see later, action composition will allow
for additional insight into the agent’s behavior and helps provide
useful information about quantum optical setups in general. We
found that the PS model discovers significantly more interesting
experiments than both automated random search and automated
random search with action composition (Fig. 2B).

Ingredients for Successful Learning. In general, successful learning
relies on a structure hidden in the task environment (or dataset).
The results presented thus far show that PS is highly successful

CBA

Fig. 4. Exploration space of optical setups. Different setups are represented by vertices with colors specifying an associated SRV [biseparable states are
depicted in blue]. Arrows represent the placing of optical elements. (A) A randomly generated space of optical setups. Here we allow up to 6 elements
on the optical table and a standard toolbox of 30 elements. Large, colored vertices represent interesting experiments. If two nodes share a color, they can
generate a state with the same SRV. Running for 1.6 ⇥ 104 experiments, the graph that is shown here has 45,605 nodes, of which 67 represent interesting
setups. (B) A part of graph A, which demonstrates the nontrivial structure of the network of optical setups. (C) A detailed view of one part of the bigger
network. The depicted colored maze represents an analogy between the task of finding the shortest implementation of an experiment and the task of
navigating in a maze (10, 41, 48, 49). Arrows of different colors represent distinct optical elements that are placed in the experiment. The initial state is
represented by an empty table ?. The shortest path to a setup that produces a state with SRV (3, 3, 2) and (3, 3, 3) is highlighted. Labels along this path
coincide with the labels of the percept clips in Fig. 1B.

in the task of designing new interesting experiments, and here we
elucidate why this should be the case. The following analysis also
sheds light on other settings where we can be confident that RL
techniques can be applied as well.

First, the space of optical setups can be illustrated using a
graph as given in Fig. 4C, where the building of an optical exper-
iment corresponds to a walk on the directed graph. Note that
optical setups that create a certain state are not unique: Two or
more different setups can generate the same quantum state. Due
to this fact, this graph does not have a tree structure but rather
resembles a maze. Navigating in a maze, in turn, constitutes
one of the classic textbook RL problems (10, 41, 48, 49). Sec-
ond, our empirical analysis suggests that experiments generating
high-dimensional multipartite entanglement tend to have some
structural similarities (12) (Fig. 4 A and B partially displays
the exploration space). Fig. 4 shows regions where the den-
sity of interesting experiments (large colored nodes) is high and
others where it is low—interesting experiments seem to be clus-
tered (Fig. S2). In turn, RL is particularly useful when one
needs to handle situations which are similar to those previously
encountered—once one maze (optical experiment) is learned,
similar mazes (experiments) are tackled more easily, as we have
seen before. In other words, whenever the experimental task has
a maze-type underlying structure, which is often the case, PS can
likely help—and critically, without having any a priori informa-
tion about the structure itself (41, 51). In fact, PS gathers infor-
mation about the underlying structure throughout the learning
process. This information can then be extracted by an external
user or potentially be used further by the agent itself.

The Potential of Learning from Experiments. Thus far, we have
established that a machine can indeed design new quantum
experiments in the setting where the task is precisely specified
(via the rewarding rule). Intuitively, this could be considered the
limit of what a machine can do for us, as machines are speci-
fied by our programs. However, this falls short from what, for
instance, a human researcher can achieve. How could we, even
in principle, design a machine to do something (interesting) we
have not specified it to do? To develop an intuition for the type
of behavior we could hope for, consider, for the moment, what
we may expect a human, say a good PhD student, would do in
situations similar to those studied thus far.

1224 | www.pnas.org/cgi/doi/10.1073/pnas.1714936115 Melnikov et al.
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navigating in a maze (10, 41, 48, 49). Arrows of different colors represent distinct optical elements that are placed in the experiment. The initial state is
represented by an empty table ?. The shortest path to a setup that produces a state with SRV (3, 3, 2) and (3, 3, 3) is highlighted. Labels along this path
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Overview: machine learning for quantum error correction

QEC decoding problem

surface/toric code
[Torlai & Melko, PRL 119, 030501 (2017)]

[Baireuther et al., Quantum 2, 48 (2018)]

[Krastanov & Jiang, Sci. Rep. 7, 11003 (2017)]

[Sweke et al., arXiv:1810.07207]

color code
[Baireuther et al., NJP 21.1, 013003 (2019)]

QEC protocol optimization
bang-bang protocols
[Bukov et al., PRX 8, 031086 (2018)]

QVECTOR [Johnson et al., arXiv:1711.02249]

(model-free) RL approach
[August & Hernández-Lobato, arXiv:1802.04063]
[Fösel et al., PRX 8, 031084 (2018)]

related problems:
quantum phase estimation [Hentschel & Sanders, PRL 104, 063603 (2010)] [Hentschel & Sanders, PRL
107, 233601 (2011)] [Palittapongarnpim et al., Neurocomputing 268, 116-126 (2017)]

design quantum optics experiments [Melnikov et al., PNAS, 201714936 (2017)]

quantum control [Niu et al., arXiv:1803.01857] [Porotti et al., arXiv:1901.06603]

search QEC codes [Nautrup et al., arXiv:1812.08451]

PRX 8, 031084 T. Fösel, MPL Erlangen 10/19



Reinforcement learning setup for quantum memory
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Flexibility

connectivities

msmt errors

>
errors

correlated noise
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Number of ancillas

same algorithm works for very different scenarios!

tailored to hardware resources
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Naive approach

input:
raw msmt results

〈φ|ψ〉

reward:
final overlap

does not work!!! (at least with present-day RL techniques)
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Two-stage learning

state-aware
network
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What about the reward?

problem with reward ∼ |〈φ|ψ〉|: sequence must be completely correct

include encoding, error detection, error correction, and decoding

in particular: don’t collapse superposition state with a msmt!

probability to randomly find good sequence:

� 10−20
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Final vs. immediate reward scheme

final reward immediate reward

↓
for QEC: requires quantity which tells

“How much qu. info is still left?”

t t⇒⇒ ⇒
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Recoverable quantum information

question: “How much quantum information is still left?”
m

eq. (under a few conditions): How well can antipodal logical states be distinguished?

RQ = min
~n

1

2

∥∥ρ̂~n− ρ̂−~n

∥∥
1

recoverable
quantum information
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Conclusion and Outlook

last year: proof of concept
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more difficult problems (higher qubit numbers, . . . )

better learning algorithms more efficient physics engine
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quantum information
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