QAR-Lab Site Report and the PlanQK Initiative

Workshop on Machine Learning for Quantum Technology

Thomas Gabor (thomas.gabor@ifi.Imu.de) with thanks to Christoph Roch and Sebastian Feld

Machine Learning Solutions

Quantum Problems

Artificial Intelligence Problems

Quantum Solutions

렌, QAR-Lab

QAR-Lab Site Report

AQAR-Lab

Quantum Applications and Research Laboratory

- young group at the chair for Mobile and Distributed Systems at the LMU Munich
- focused on software for quantum computers or similar machines
- interested in near-term applicability
- strong connections to industry

VOLKSWAGEN
\# $\underset{\substack{\text { DATA: } \\ \text { MUNICH }}}{\text { DAB A P B }}$

- In March, we hosted the First International Workshop on Quantum Technologies and Optimization Problems (QTOP'19) with 18 accepted papers and Springer LNCS proceedings.

3SAT

- Given a Boolean formula in CNF (with 3 literals per clause)
- Is this formula satisfiable?
- $\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{4}} \vee \overline{x_{5}}\right)$
- Yes, for example choose $x_{1}=T, x_{2}=T, x_{3}=T, x_{4}=F, x_{5}=T$

[^0]- Given a Boolean formula in CNF (with 3 literals per clause)
- Is this formula satisfiable?
- $\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{4}} \vee \overline{x_{5}}\right)$
- Yes, for example choose $x_{1}=T, x_{2}=T, x_{3}=T, x_{4}=F, x_{5}=T$,

[^1]The hardness of a 3SAT problem with m clauses over n variables depends on the ratio of clauses over variables $\alpha=\mathrm{m} / \mathrm{n}$

The hardness of a 3SAT problem with m clauses over n variables depends on the ratio of clauses over variables $\alpha=\mathrm{m} / \mathrm{n}$
...on a classical machine...

The hardness of a 3SAT problem with m clauses over n variables depends on the ratio of clauses over variables $\alpha=\mathrm{m} / \mathrm{n}$
...on a classical machine...

How does the Quantum Annealer behave?

3SAT instance

$F=(a \vee b \vee c) \wedge(a \vee \neg b \vee \neg c)$

Quantum Annealer

 (D-Wave 2000Q)
incentive to choose literals for proof
only one literal per clause needed for proof

easy 3SAT instance

hard 3SAT instance

easy 3SAT instance

hard 3SAT instance

with D-Wave postprocessing ("optimizing")
easy 3SAT instance

hard 3SAT instance

easy 3SAT instance

hard 3SAT instance

Q-Nash

- Given a graphical game
- players are nodes, interactions are edges
- players only play a game with their neighbors
- What joint action is a pure Nash equilibrium?

- no player can improve by deviating from joint action unilaterally

[^2]
Step 1

Compute best response strategies for each player (classically)

Step 2
 Reduce to Set Cover (run on Quantum Annealer)

FIGURE 1 - Complete Pro

Machine Learning

Machine Learning

Monitoring QoS

Frequent Itemset Mining
$A G, A C, G D, C F, D B, F B, B D$
$C F, E B, F B, B E, B A, E C$
EE, DC, EA, CA, AG, AB
AG, AC, GC, CE, CF, EE
$B A, B A, A G, A C, G C, C F$
GC, GA, CA, AB, AD, BE, DF

Bayesian Inference

Machine Learning

Select Model/Policy

H Neven, VS Denchev, G Rose, WG Macready. QBoost: Large Scale Classifier Training with
Adiabatic Quantum Optimization.
ACML, 2012.

Classifier Selection

Andreas Hessenberger. Unpublished results.

Florian Neukart, David Von Dollen, Christian Seidel, Gabriele Compostella.
Quantum-Enhanced Reinforcement Learning for Finite-Episode Games with Discrete State Spaces.
Frontiers in Physics 5, 2017.

Sample Selection (Quantum-Enhanced Q-Learning)
$Q U B O(i, j)= \begin{cases}Q U B O(i, j)+\left(L_{i(v)}+L_{j(v)}\right)^{2}, & \text { if } \mathrm{c} 1 \\ Q U B O(i, j)-\left(\left(L_{i(v)}+L_{j(v)}\right)^{2}\right), & \text { if } \mathrm{c} 2 \\ Q U B O(i, j), & \text { otherwise }\end{cases}$

Machine Learning

Train

DiscriminativeTraining

(pure classical)

Machine Learning

Machine Learning

Machine Learning

PlanQK Initiative

PlanQK

Plattform und Ökosystem für Quantenunterstützte Künstliche Intelligenz

 platform and ecosystem for quantum-supported artificial intelligence

The Web Service Factory

Q U ANTUM SIMULATIONS

Universität Stuttgart

Why further complicate AI?

Al and Computation

1) "Al researchers have often tried to build knowledge into their agents,
2) this always helps in the short term, and is personally satisfying to the researcher, but
3) in the long run it plateaus and even inhibits further progress, and
4) breakthrough progress eventually arrives by an opposing approach based on scaling computation by search and learning."
```
Rich Sutton.
The Bitter Lesson.
www.incompleteideas.net/
Incldeas/BitterLesson.htm|
```


Al and Computation

1) "Al researchers have often tried to build knowledge into their agents,
2) this always helps in the short term, and is personally satisfying to the researcher, but
3) in the long run it plateaus and even inhibits further progress, and
4) breakthrough progress eventually arrives by an opposing approach based on scaling computation by search and learning."
"The biggest lesson that can be read from 70 years of Al research is that general methods that leverage computation are ultimately the most effective, and by a large margin."
[^3]
Computation Power used in Al

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

Dario Amodei and Danny Hernandez. Al and Compute.
openai.com/blog/ai-and-compute/

Computation Power used in Al

"Since 2012, the amount of compute used in the largest Al training runs has been increasing exponentially with a 3.5 month doubling time (by comparison, Moore's Law had an 18 month doubling period)."

```
Dario Amodei and Danny Hernandez Al and Compute. openai.com/blog/ai-and-compute/
```


Options for the Future

Options for the Future

Al experiments become more
expensive

Options for the Future

Al experiments become more expensive

Progress in Al research slows down

Options for the Future

Al experiments become more expensive

Progress in Al research slows down

We find a way to increase available computing power

Options for the Future

Al experiments become more expensive

Progress in Al
research slows down

We find a way to increase available computing power

An Awful Lot of Expertise

Domain
Analysis

Al
Algorithms

Quantum
Platform

PlanQK

QAI concepts

PlanQK

PlanQK

The Plan for PlanQK

We are preparing a roadmap for making PlanQK reality.

The Plan for PlanQK

The Plan for PlanQK

```
stone Jone
an Service Faction
Нファ=
(1) SIMUATATMON Stuttgart
LMU
```

We are preparing a roadmap for making PlanQK reality.
funded by the German ministry for commerce (BMWi)

The Plan for PlanQK

We are preparing a roadmap for making PlanQK reality.

describing a larger
follow-up project with many more partners
(including you?)

The Plan for PlanQK

We are preparing a roadmap for making PlanQK reality.


```
    describing a larger
    follow-up project with
    many more partners
    (including you?)
```


The Plan for PlanQK

We are preparing a roadmap for making PlanQK reality.

The Plan for PlanQK

We are preparing a roadmap for making PlanQK reality.
funded by the German ministry for commerce (BMWi)

For more information ask me!

or visit
www.mobile.ifi.Imu.de/qar-lab www.mobile.ifi.Imu.de/planqk
or both

Thomas Gabor (thomas.gabor@ifi.Imu.de) with thanks to Christoph Roch and Sebastian Feld

[^0]: Thomas Gabor, Sebastian Zielinski, Sebastian Feld, Christoph Roch, Christian Seidel, Florian Neukart, Isabella Galter, Wolfgang Mauerer, and Claudia Linnhoff-Popien. Assessing Solution Quality of 3SAT on a Quantum Annealing Platform. In International Workshop on Quantum Technology and Optimization Problems. Springer, 2019.

[^1]: Thomas Gabor, Sebastian Zielinski, Sebastian Feld, Christoph Roch, Christian Seidel, Florian Neukart, Isabella Galter, Wolfgang Mauerer, and Claudia Linnhoff-Popien. Assessing Solution Quality of 3SAT on a Quantum Annealing Platform. In International Workshop on Quantum Technology and Optimization Problems. Springer, 2019.

[^2]: Roch, C., Phan, T., Feld, S., Müller, R., Gabor, T., \& Linnhoff-Popien, C. (2019). A Quantum Annealing Algorithm for Finding Pure Nash Equilibria in Graphical Games. arXiv preprint arXiv:1903.06454.

[^3]: Rich Sutton.
 The Bitter Lesson.
 www.incompleteideas.net/
 Incldeas/BitterLesson.htm|

