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Bottom line

We do the “simplest” error correction problem for a topological code 
• Periodic boundary conditions 
• No measurement noise/perfect syndrome 
• only bit flip noise (initially, can also do depolarizing) 

Still challenging for reinforcement learning: deep Q-networks needed 
Allows for easy benchmark 



The toric code

Ground state

To derive the ground state consider first the pla-
quette operator in the ‡z-basis; clearly a ground state
must have an even number of each spin-up and spin-
down on every plaquette to be a +1 eigenstate of each
plaquette operator. Let’s consider the state with all
spin-up | øøø · · · Í; acting with a vertex operator on
this flips all the spins around the vertex (see Fig. 1b)
giving a state still in ground state sector of the plaque-
tte operators as an even number of spins are flipped
on the plaquettes surrounding the vertex. (As is also
clear from the fact that all the stabilizer operators
commute.) The +1 eigenstate of that particular ver-
tex operator is thus the symmetric superposition of
the two states. A convenient way to express the op-
eration of one or several adjacent vertex operators is
in turns of loop traversing the flipped spins. Such
loops (fig. 1b-c) generated from products of vertex
operators will always be topologically trivial loops
on the surface of the torus since they are just con-
structed by merging the local loop corresponding to a
single vertex operator. Successively acting with ver-
tex operators on the states generated from the orig-
inal | øøø · · · Í we realize that the ground state is
simply the symmetric superposition of all states that
are generated from this by acting with (trivial) loops
|GS0Í =

q
iœall trivial loops loopi| øøø · · · Í.

To generate the other ground states we consider
the operators X1 and X2 (Fig. 1d) which are prod-
ucts of ‡x corresponding to the two non-trivial loops
that wind the torus. (Deformations of these loops
just correspond to multiplication by trivial loops and
is thus inconsequential.) Correspondingly there are
non-trivial loops of ‡z operators Z1 and Z2. The
four ground states are thus the topologically distinct
states {|GS0Í, X1|GS0Í, X2|GS0Í, X2X1|GS0Í} distin-
guished by their eigenvalues of Z1 and Z2 being ±1.
For a torus with d ◊ d plaquettes there are 2d2 physi-
cal qubits and the code distance, i.e. minimum length
of any logical operator (Xi or Zi), is d.

2.1.1 Error correction
Errors in the physical qubits will take the state out of
the ground state sector and thereby mask the encoded
state. The task of the error correction procedure is
to move the system back to the ground state sector
without inadvertently performing a logical operation
to change the logical qubit state. A ‡x error on a
physical qubit corresponds to a bit-flip error. On the
toric code this gives rise to a pair of defects (a.k.a.
quasiparticles or anyons) in the form of neighboring
plaquettes with ≠1 eigenvalues of the plaquette stabi-
lizers. Similarly a ‡z error corresponds to a phase-flip
error which gives rise to a pair of neighboring ≠1 de-
fects on two vertices. A ‡y = i‡x‡z simultaneously
creates both types of defects. A natural error pro-
cess is to assume that x, y, z errors occur with equal
probability, so called depolarizing or correlated noise.
This however requires to treat correlations between x

Figure 2: Bit-flip errors (red ’X’) and possible error correc-
tion bit-flips (blue ’X’). (a) Two neighboring errors and the
corresponding error chain (red line) and syndrome (red dots).
(b) Visualized in terms of the syndrome with error chain and
two possible correction chains (blue) as expressed explicitly in
(c) and (d). The error chain plus the correction chain in (d)
constitutes a non-trivial loop and a logical bit-flip operation
(as in Figure 1d), thus a failed error correction, in contrast
to the trivial loop in (c).

and z errors and the simpler uncorrelated noise model
is often used, which is what we will consider in this
work, focusing on bit-flip errors and corresponding
plaquette defects. Here x and z errors occur indepen-
dently with probability p whereas y errors occur with
probability p2. Correcting independent x and z errors
is completely equivalent (with defects either on pla-
quettes or on vertices) and it is therefore su�cient to
formulate an error correcting algorithm for one type
of error. (For actual realizations of the physical qubits
the error process is in fact expected to be intermedi-
ate between these two cases[38].) Regardless of noise
model and type of error an important aspect of the
error correction of a stabilizer formalism is that the
microscopic entanglement of the logical cubit states
or its excitations does not have to be considered ex-
plicitly as errors act equivalently on all states that
belong to the same stabilizer sector.

A crucial aspect of quantum error correction is that
the actual bit-flip errors cannot be measured without
collapsing the state into a partial basis and destroying
the qubit. What can be measured without destroying
the logical qubit are the stabilizers, i.e. for bit-flip
error the ±1 eigenvalue of the plaquette operators.
The complete set of incorrect (≠1) plaquettes makes
up the syndrome of the state. The complete set of
bit-flip errors will produce a unique syndrome as the
end-points of strings of bit-flip errors. The converse
however is not true, which is what makes the task
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act with two vertex op:

still a plaquette 

ground state

To derive the ground state consider first the pla-
quette operator in the ‡z-basis; clearly a ground state
must have an even number of each spin-up and spin-
down on every plaquette to be a +1 eigenstate of each
plaquette operator. Let’s consider the state with all
spin-up | øøø · · · Í; acting with a vertex operator on
this flips all the spins around the vertex (see Fig. 1b)
giving a state still in ground state sector of the plaque-
tte operators as an even number of spins are flipped
on the plaquettes surrounding the vertex. (As is also
clear from the fact that all the stabilizer operators
commute.) The +1 eigenstate of that particular ver-
tex operator is thus the symmetric superposition of
the two states. A convenient way to express the op-
eration of one or several adjacent vertex operators is
in turns of loop traversing the flipped spins. Such
loops (fig. 1b-c) generated from products of vertex
operators will always be topologically trivial loops
on the surface of the torus since they are just con-
structed by merging the local loop corresponding to a
single vertex operator. Successively acting with ver-
tex operators on the states generated from the orig-
inal | øøø · · · Í we realize that the ground state is
simply the symmetric superposition of all states that
are generated from this by acting with (trivial) loops
|GS0Í =

q
iœall trivial loops loopi| øøø · · · Í.

To generate the other ground states we consider
the operators X1 and X2 (Fig. 1d) which are prod-
ucts of ‡x corresponding to the two non-trivial loops
that wind the torus. (Deformations of these loops
just correspond to multiplication by trivial loops and
is thus inconsequential.) Correspondingly there are
non-trivial loops of ‡z operators Z1 and Z2. The
four ground states are thus the topologically distinct
states {|GS0Í, X1|GS0Í, X2|GS0Í, X2X1|GS0Í} distin-
guished by their eigenvalues of Z1 and Z2 being ±1.
For a torus with d ◊ d plaquettes there are 2d2 physi-
cal qubits and the code distance, i.e. minimum length
of any logical operator (Xi or Zi), is d.

2.1.1 Error correction
Errors in the physical qubits will take the state out of
the ground state sector and thereby mask the encoded
state. The task of the error correction procedure is
to move the system back to the ground state sector
without inadvertently performing a logical operation
to change the logical qubit state. A ‡x error on a
physical qubit corresponds to a bit-flip error. On the
toric code this gives rise to a pair of defects (a.k.a.
quasiparticles or anyons) in the form of neighboring
plaquettes with ≠1 eigenvalues of the plaquette stabi-
lizers. Similarly a ‡z error corresponds to a phase-flip
error which gives rise to a pair of neighboring ≠1 de-
fects on two vertices. A ‡y = i‡x‡z simultaneously
creates both types of defects. A natural error pro-
cess is to assume that x, y, z errors occur with equal
probability, so called depolarizing or correlated noise.
This however requires to treat correlations between x

Figure 2: Bit-flip errors (red ’X’) and possible error correc-
tion bit-flips (blue ’X’). (a) Two neighboring errors and the
corresponding error chain (red line) and syndrome (red dots).
(b) Visualized in terms of the syndrome with error chain and
two possible correction chains (blue) as expressed explicitly in
(c) and (d). The error chain plus the correction chain in (d)
constitutes a non-trivial loop and a logical bit-flip operation
(as in Figure 1d), thus a failed error correction, in contrast
to the trivial loop in (c).

and z errors and the simpler uncorrelated noise model
is often used, which is what we will consider in this
work, focusing on bit-flip errors and corresponding
plaquette defects. Here x and z errors occur indepen-
dently with probability p whereas y errors occur with
probability p2. Correcting independent x and z errors
is completely equivalent (with defects either on pla-
quettes or on vertices) and it is therefore su�cient to
formulate an error correcting algorithm for one type
of error. (For actual realizations of the physical qubits
the error process is in fact expected to be intermedi-
ate between these two cases[38].) Regardless of noise
model and type of error an important aspect of the
error correction of a stabilizer formalism is that the
microscopic entanglement of the logical cubit states
or its excitations does not have to be considered ex-
plicitly as errors act equivalently on all states that
belong to the same stabilizer sector.

A crucial aspect of quantum error correction is that
the actual bit-flip errors cannot be measured without
collapsing the state into a partial basis and destroying
the qubit. What can be measured without destroying
the logical qubit are the stabilizers, i.e. for bit-flip
error the ±1 eigenvalue of the plaquette operators.
The complete set of incorrect (≠1) plaquettes makes
up the syndrome of the state. The complete set of
bit-flip errors will produce a unique syndrome as the
end-points of strings of bit-flip errors. The converse
however is not true, which is what makes the task
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learning to error correction of the surface code was
implemented. That work focuses on the important is-
sue of error generated in the readout of the syndrome
and used an auxiliary ”referee decoder” to assist the
performance of the RL decooder. In the present work
we consider the simpler but conceptually more direct
problem of error correction on a perfect syndrome, not
corrupted by error. The problem can be addressed
by the Minimum Weight Perfect Matching (MWPM)
or Blossom algorithm[24–26] and has also been the
topic of many studies using methods such as renor-
malization group[27], cellular automata[28, 29], and
a number of neural network based decoders typically
using supervised learning[17, 30–36]. We find that by
setting up a reward scheme that encourage the elim-
ination of the syndrome in as few operations as pos-
sible within the deep Q-learning (or deep Q-network,
DQN)[6, 7] formalism we are able to arrive at an algo-
rithm that is comparable in performance to MWPM.
Although the present algorithm does not outperform
the latter we expect that it has the potential to be
more versatile when addressing correlated noise, mea-
surement noise, or the surface code for varying ge-
ometries. Compared to the MWPM algorithm the
RL algorithm also has the advantage that it provides
step by step correction, meaning that it can readily
adjust to the introduction of additional errors during
the correction epsiode without recalculating the full
error correcting strings of bit (or phase) flips. The rea-
son that we study the toric code in this work, rather
than the surface code with boundaries, is that the Q-
network can make very good use of the translational
symmetry of the former, which significantly speeds up
the training.

The outline of the paper is the following. In the
Background section we give a brief but self-contained
summary of the main features of the toric code includ-
ing the basic structure of the error correction and a
similar summary of one-step Q-learning and deep Q-
learning. (The reader familiar with these topics can
readily skip ahead.) The following section, RL Algo-
rithm, describes the formulation and training of the
error correcting agent. In the Results section we shows
that we have trained the RL agent up to system sizes
of 7 ◊ 7 with performance which is very close to the
MWPM algorithm. We finally conclude and append
details of the asymptotic fail rate for small error rates
as well as the neural network architecture and the RL
and network hyperparameters.

2 Background
2.1 Toric code
Here we recapitulate the main aspects of the topo-
logical toric code in an informal manner and from
the perspective of an interacting quantum spin-

Figure 1: A d = 5 toric code lattice with rings indicating the
physical cubits and grey showing the periodic boundary con-
ditions. a) Plaquette (green) and vertex (red) operators, as
products of ‡

z and ‡
x Pauli matrices. b) A single vertex op-

erator can be represented as a loop flipping the cubits that
the it crosses. c) Two neighboring vertex operators make
up a larger loop. d) The logical operators X1/2 (red) and
Z1/2 (green) consist of loops winding the torus and are not
representable in terms of products of vertex or plaquette op-
erators.

Hamiltonian.[20, 21]1

The basic construction is a square lattice with a
spin- 1

2 degree of freedom on every bond, the physical
qubits, and with periodic boundary conditions mak-
ing up the torus, see Figure 1. (An alternative rotated
lattice representation with the qubits on sites is also
common in the literature.) The model is given in
terms of a Hamiltonian

H = ≠
ÿ

–

P̂– ≠
ÿ

‹

V̂‹ , (1)

where – runs over all plaquettes and ‹ over all ver-
tices (sites). The stabilizers are the plaquette oper-
ators P̂– =

r
iœ–

‡z

i
and the vertex operators V̂‹ =r

iœ‹
‡x

i
, where ‡z and ‡x are the Pauli matrices.

(Where, in the ‡z basis, ‡z| ø / ¿Í = ±1| ø / ¿Í
and ‡x| ø / ¿Í = | ¿ / øÍ.) The stabilizers commute
with each other and the Hamiltonian thus block diag-
onalizing the latter. On a d ◊ d lattice of plaquettes
d2 ≠ 1 plaquette operators are linearly independent
(e.g. it is not possible to have a single ≠1 eigenvalue
with all other +1) and correspondingly for the ver-
tex operators. With 2d2 physical qubits and 2d2 ≠ 2
stabilizers the size of each block is 22d

2
/22d

2≠2 = 4,
corresponding in particular to a ground state which is
4-fold degenerate. These are the states that will serve
as the logical qubits. (More precisely, given the 4-fold
degeneracy it is a qudit or base-4 qubit.)

1Figures in this section were inspired by lecture notes [37].

2

Plaquette and Vertex stabilizers (parity checks)

P̂↵ =
Y

i2↵

�z
i

V̂⌫ =
Y

i2⌫

�x
i

2d2 physical qubits, 2d2-2 independent stabilizers
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Fault-tolerant quantum computation by anyons

A.Yu. Kitaev*
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Abstract

A two-dimensional quantum system with anyonic excitations can be considered as a quan-
tum computer. Unitary transformations can be performed by moving the excitations around
each other. Measurements can be performed by joining excitations in pairs and observing the
result of fusion. Such computation is fault-tolerant by its physical nature.
! 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

A quantum computer can provide fast solution for certain computational prob-
lems (e.g., factoring and discrete logarithm [1]) which require exponential time on
an ordinary computer. Physical realization of a quantum computer is a big challenge
for scientists. One important problem is decoherence and systematic errors in unitary
transformations which occur in real quantum systems. From the purely theoretical
point of view, this problem has been solved due to Shor!s discovery of fault-tolerant
quantum computation [2], with subsequent improvements [3–6]. An arbitrary quan-
tum circuit can be simulated using imperfect gates, provided these gates are close to
the ideal ones up to a constant precision d. Unfortunately, the threshold value of d is
rather small;1 it is very difficult to achieve this precision.

Needless to say, classical computation can be also performed fault-
tolerantly. However, it is rarely done in practice because classical gates are reliable
enough. Why is it possible? Let us try to understand the easiest thing—why classical

Annals of Physics 303 (2003) 2–30

www.elsevier.com/locate/aop

* Present address: Caltech 107-81, Pasadena, CA 91125, USA.
E-mail addresses: kitaev@itp.ac.ru, kitaev@cs.caltech.edu.
1 Actually, the threshold is not known. Estimates vary from 1/300 [7] to 10!6 [4].
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We analyze surface codes, the topological quantum error-correcting codes intro-
duced by Kitaev. In these codes, qubits are arranged in a two-dimensional array on
a surface of nontrivial topology, and encoded quantum operations are associated
with nontrivial homology cycles of the surface. We formulate protocols for error
recovery, and study the efficacy of these protocols. An order-disorder phase transi-
tion occurs in this system at a nonzero critical value of the error rate; if the error
rate is below the critical value !the accuracy threshold", encoded information can
be protected arbitrarily well in the limit of a large code block. This phase transition
can be accurately modeled by a three-dimensional Z2 lattice gauge theory with
quenched disorder. We estimate the accuracy threshold, assuming that all quantum
gates are local, that qubits can be measured rapidly, and that polynomial-size clas-
sical computations can be executed instantaneously. We also devise a robust recov-
ery procedure that does not require measurement or fast classical processing; how-
ever, for this procedure the quantum gates are local only if the qubits are arranged
in four or more spatial dimensions. We discuss procedures for encoding, measure-
ment, and performing fault-tolerant universal quantum computation with surface
codes, and argue that these codes provide a promising framework for quantum
computing architectures. © 2002 American Institute of Physics.
#DOI: 10.1063/1.1499754$

I. INTRODUCTION

The microscopic world is quantum mechanical, but the macroscopic world is classical. This
fundamental dichotomy arises because a coherent quantum superposition of two readily distin-
guishable macroscopic states is highly unstable. The quantum state of a macroscopic system
rapidly decoheres due to unavoidable interactions between the system and its surroundings.

Decoherence is so pervasive that it might seem to preclude subtle quantum interference
phenomena in systems with many degrees of freedom. However, recent advances in the theory of
quantum error correction suggest otherwise.1,2 We have learned that quantum states can be clev-
erly encoded so that the debilitating effects of decoherence, if not too severe, can be resisted.
Furthermore, fault-tolerant protocols have been devised that allow an encoded quantum state to be
reliably processed by a quantum computer with imperfect components.3 In principle, then, very
intricate quantum systems can be stabilized and accurately controlled.

The theory of quantum fault tolerance has shown that, even for delicate coherent quantum
states, information processing can prevent information loss. In this article, we will study a par-
ticular approach to quantum fault tolerance that has notable advantages: in this approach, based on
the surface codes introduced in Refs. 4 and 5, the quantum processing needed to control errors has
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d"Electronic mail: alandahl@theory.caltech.edu
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Non-trivial loops (encircling torus)  X1, X2 

are not products of vertex operators. 
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Non-trivial loops=Logical bit-flip operators

Requires at least d physical bit-flip errors


code distance d

To derive the ground state consider first the pla-
quette operator in the ‡z-basis; clearly a ground state
must have an even number of each spin-up and spin-
down on every plaquette to be a +1 eigenstate of each
plaquette operator. Let’s consider the state with all
spin-up | øøø · · · Í; acting with a vertex operator on
this flips all the spins around the vertex (see Fig. 1b)
giving a state still in ground state sector of the plaque-
tte operators as an even number of spins are flipped
on the plaquettes surrounding the vertex. (As is also
clear from the fact that all the stabilizer operators
commute.) The +1 eigenstate of that particular ver-
tex operator is thus the symmetric superposition of
the two states. A convenient way to express the op-
eration of one or several adjacent vertex operators is
in turns of loop traversing the flipped spins. Such
loops (fig. 1b-c) generated from products of vertex
operators will always be topologically trivial loops
on the surface of the torus since they are just con-
structed by merging the local loop corresponding to a
single vertex operator. Successively acting with ver-
tex operators on the states generated from the orig-
inal | øøø · · · Í we realize that the ground state is
simply the symmetric superposition of all states that
are generated from this by acting with (trivial) loops
|GS0Í =

q
iœall trivial loops loopi| øøø · · · Í.

To generate the other ground states we consider
the operators X1 and X2 (Fig. 1d) which are prod-
ucts of ‡x corresponding to the two non-trivial loops
that wind the torus. (Deformations of these loops
just correspond to multiplication by trivial loops and
is thus inconsequential.) Correspondingly there are
non-trivial loops of ‡z operators Z1 and Z2. The
four ground states are thus the topologically distinct
states {|GS0Í, X1|GS0Í, X2|GS0Í, X2X1|GS0Í} distin-
guished by their eigenvalues of Z1 and Z2 being ±1.
For a torus with d ◊ d plaquettes there are 2d2 physi-
cal qubits and the code distance, i.e. minimum length
of any logical operator (Xi or Zi), is d.

2.1.1 Error correction
Errors in the physical qubits will take the state out of
the ground state sector and thereby mask the encoded
state. The task of the error correction procedure is
to move the system back to the ground state sector
without inadvertently performing a logical operation
to change the logical qubit state. A ‡x error on a
physical qubit corresponds to a bit-flip error. On the
toric code this gives rise to a pair of defects (a.k.a.
quasiparticles or anyons) in the form of neighboring
plaquettes with ≠1 eigenvalues of the plaquette stabi-
lizers. Similarly a ‡z error corresponds to a phase-flip
error which gives rise to a pair of neighboring ≠1 de-
fects on two vertices. A ‡y = i‡x‡z simultaneously
creates both types of defects. A natural error pro-
cess is to assume that x, y, z errors occur with equal
probability, so called depolarizing or correlated noise.
This however requires to treat correlations between x

Figure 2: Bit-flip errors (red ’X’) and possible error correc-
tion bit-flips (blue ’X’). (a) Two neighboring errors and the
corresponding error chain (red line) and syndrome (red dots).
(b) Visualized in terms of the syndrome with error chain and
two possible correction chains (blue) as expressed explicitly in
(c) and (d). The error chain plus the correction chain in (d)
constitutes a non-trivial loop and a logical bit-flip operation
(as in Figure 1d), thus a failed error correction, in contrast
to the trivial loop in (c).

and z errors and the simpler uncorrelated noise model
is often used, which is what we will consider in this
work, focusing on bit-flip errors and corresponding
plaquette defects. Here x and z errors occur indepen-
dently with probability p whereas y errors occur with
probability p2. Correcting independent x and z errors
is completely equivalent (with defects either on pla-
quettes or on vertices) and it is therefore su�cient to
formulate an error correcting algorithm for one type
of error. (For actual realizations of the physical qubits
the error process is in fact expected to be intermedi-
ate between these two cases[38].) Regardless of noise
model and type of error an important aspect of the
error correction of a stabilizer formalism is that the
microscopic entanglement of the logical cubit states
or its excitations does not have to be considered ex-
plicitly as errors act equivalently on all states that
belong to the same stabilizer sector.

A crucial aspect of quantum error correction is that
the actual bit-flip errors cannot be measured without
collapsing the state into a partial basis and destroying
the qubit. What can be measured without destroying
the logical qubit are the stabilizers, i.e. for bit-flip
error the ±1 eigenvalue of the plaquette operators.
The complete set of incorrect (≠1) plaquettes makes
up the syndrome of the state. The complete set of
bit-flip errors will produce a unique syndrome as the
end-points of strings of bit-flip errors. The converse
however is not true, which is what makes the task
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A Small error rate
As discussed by Fowler et al.[22, 40] the likely oper-
ating regime of surface code is in the limit of small
error rate p π 1. In addition, in the limit p æ 0 we
can derive an exact expression for the rate of logical
failure under the assumption of MWPM error correc-
tion, thus providing a solid benchmark for our RL
algorithm. Such expressions were derived for the sur-
face code in [40] and here we derive the corresponding
expression for bit-flip errors in the toric code.

Consider first the case of code distance d with d œ
odd, which is what we have assumed in the present
work. (Using odd d gives an additional simplification
of the Q-learning set-up from the fact that any pla-
quette can be considered the center of the lattice.) As
a reminder, the error formulation we use is that ev-
ery physical qubit has a probability p of bit-flip error,
and probability 1 ≠ p of no error. (In contrast to [40]
we don’t consider ‡y errors, which would give rise to
both bit-flip and phase-flip errors.) For very low p,
we only need consider states with the minimal num-
ber of bit-flip errors that may cause a logical failure.
One can readily be convinced (from a few examples)
that such states are ones where a number Ád/2Ë (e.g.
Á7/2Ë = 4) of errors are placed along the path of the
shortest possible non-trivial (logical) loops. The lat-
ter are d sites long, and on the torus there are 2d
such loops. For such a state MWPM will always fail,
because it will provide a correction string which has
Âd/2Ê bit-flips rather than the Ád/2Ë flips needed to

make a successful error correction. The former correc-
tion string, together with the initial error string, will
sum to one of the non-trivial (shortest length) loops
and give rise to a logical bit-flip. The fail-rate pL, i.e.
the fraction of logical fails of all generated syndromes,
is thus to lowest order in p and for odd d given by

pL = 2d

3
d

Ád/2Ë

4
pÁd/2Ë . (4)

Here 2d is the number of shortest non-trivial loops,!
d

Ád/2Ë
"
is the number of ways of placing the errors on

such a loop, and pÁd/2Ë is the lowest order term in the
probability (pÁd/2Ë(1 ≠ p)2d

2≠Ád/2Ë) of any particular
state with Ád/2Ë errors.
Considering d even (for reference), the correspond-

ing minimal fail scenario has d/2 errors on a length
d loop. Here the MWPM has a 50% chance of con-
structing either a non-trivial or trivial loop, thus giv-
ing the asymptotic fail rate pL = d

!
d

d/2
"
pd/2.

B Network architecture and training
parameters
The reinforcement learning agent makes use of a deep
convolutional neural network to approximate the Q
values for the possible actions of each defect. The
network (see Fig. 3) consists of an input layer which
is d◊d matrix corresponding to a perspective (binary
input, 0 or 1, with 1 corresponding to a defect), and a
convolutional layer followed by several fully-connected
layers and an output layer consisting of four neurons,
representing each of the four possible actions. All lay-
ers have ReLU activation functions except the output
layer which has simple linear activation.

Table 1: Network architecture d=5. FC=Fully connected
# Type Size # parameters
0 Input 5x5
1 Conv. 512 filters; 3x3 size;

2-2 stride 5 120
2 FC 256 neurons 524 544
3 FC 128 neurons 32 896
4 FC 64 neurons 8 256
5 FC 32 neurons 2 080
6 FC (out) 4 neurons 132

573 028

The network architecture is summarized in Table
1 and 2. We also included explicitly a count of the
number of parameters (weights and biases) to em-
phasize the huge reduction compared to tabulating

the Q-function. The latter requires of the order
!

d
2

NS

"

entries, for Ns defects, where Ns will also vary as the
syndrome is reduced, with initially NS ≥ 4pd2 as each

10

MWPM asymptotic (lowest order in p) fail rate is:
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Deep reinforcement learning/Deep Q-learning
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Human-level control through deep reinforcement
learning
Volodymyr Mnih1*, Koray Kavukcuoglu1*, David Silver1*, Andrei A. Rusu1, Joel Veness1, Marc G. Bellemare1, Alex Graves1,
Martin Riedmiller1, Andreas K. Fidjeland1, Georg Ostrovski1, Stig Petersen1, Charles Beattie1, Amir Sadik1, Ioannis Antonoglou1,
Helen King1, Dharshan Kumaran1, Daan Wierstra1, Shane Legg1 & Demis Hassabis1

The theory of reinforcement learning provides a normative account1,
deeply rooted in psychological2 and neuroscientific3 perspectives on
animal behaviour, of how agents may optimize their control of an
environment. To use reinforcement learning successfully in situations
approaching real-world complexity, however, agents are confronted
with a difficult task: they must derive efficient representations of the
environment from high-dimensional sensory inputs, and use these
to generalize past experience to new situations. Remarkably, humans
and other animals seem to solve this problem through a harmonious
combination of reinforcement learning and hierarchical sensory pro-
cessing systems4,5, the former evidenced by a wealth of neural data
revealing notable parallels between the phasic signals emitted by dopa-
minergic neurons and temporal difference reinforcement learning
algorithms3. While reinforcement learning agents have achieved some
successes in a variety of domains6–8, their applicability has previously
been limited to domains in which useful features can be handcrafted,
or to domains with fully observed, low-dimensional state spaces.
Here we use recent advances in training deep neural networks9–11 to
develop a novel artificial agent, termed a deep Q-network, that can
learn successful policies directly from high-dimensional sensory inputs
using end-to-end reinforcement learning. We tested this agent on
the challenging domain of classic Atari 2600 games12. We demon-
strate that the deep Q-network agent, receiving only the pixels and
the game score as inputs, was able to surpass the performance of all
previous algorithms and achieve a level comparable to that of a pro-
fessional human games tester across a set of 49 games, using the same
algorithm, network architecture and hyperparameters. This work
bridges the divide between high-dimensional sensory inputs and
actions, resulting in the first artificial agent that is capable of learn-
ing to excel at a diverse array of challenging tasks.

We set out to create a single algorithm that would be able to develop
a wide range of competencies on a varied range of challenging tasks—a
central goal of general artificial intelligence13 that has eluded previous
efforts8,14,15. To achieve this, we developed a novel agent, a deep Q-network
(DQN), which is able to combine reinforcement learning with a class
of artificial neural network16 known as deep neural networks. Notably,
recent advances in deep neural networks9–11, in which several layers of
nodes are used to build up progressively more abstract representations
of the data, have made it possible for artificial neural networks to learn
concepts such as object categories directly from raw sensory data. We
use one particularly successful architecture, the deep convolutional
network17, which uses hierarchical layers of tiled convolutional filters
to mimic the effects of receptive fields—inspired by Hubel and Wiesel’s
seminal work on feedforward processing in early visual cortex18—thereby
exploiting the local spatial correlations present in images, and building
in robustness to natural transformations such as changes of viewpoint
or scale.

We consider tasks in which the agent interacts with an environment
through a sequence of observations, actions and rewards. The goal of the

agent is to select actions in a fashion that maximizes cumulative future
reward. More formally, we use a deep convolutional neural network to
approximate the optimal action-value function

Q! s,að Þ~ max
p

rtzcrtz1zc2rtz2z . . . jst~s, at~a, p
! "

,

which is the maximum sum of rewards rt discounted by c at each time-
step t, achievable by a behaviour policy p 5 P(ajs), after making an
observation (s) and taking an action (a) (see Methods)19.

Reinforcement learning is known to be unstable or even to diverge
when a nonlinear function approximator such as a neural network is
used to represent the action-value (also known as Q) function20. This
instability has several causes: the correlations present in the sequence
of observations, the fact that small updates to Q may significantly change
the policy and therefore change the data distribution, and the correlations
between the action-values (Q) and the target values rzc max

a0
Q s0, a0ð Þ.

We address these instabilities with a novel variant of Q-learning, which
uses two key ideas. First, we used a biologically inspired mechanism
termed experience replay21–23 that randomizes over the data, thereby
removing correlations in the observation sequence and smoothing over
changes in the data distribution (see below for details). Second, we used
an iterative update that adjusts the action-values (Q) towards target
values that are only periodically updated, thereby reducing correlations
with the target.

While other stable methods exist for training neural networks in the
reinforcement learning setting, such as neural fitted Q-iteration24, these
methods involve the repeated training of networks de novo on hundreds
of iterations. Consequently, these methods, unlike our algorithm, are
too inefficient to be used successfully with large neural networks. We
parameterize an approximate value function Q(s,a;hi) using the deep
convolutional neural network shown in Fig. 1, in which hi are the param-
eters (that is, weights) of the Q-network at iteration i. To perform
experience replay we store the agent’s experiences et 5 (st,at,rt,st 1 1)
at each time-step t in a data set Dt 5 {e1,…,et}. During learning, we
apply Q-learning updates, on samples (or minibatches) of experience
(s,a,r,s9) , U (D), drawn uniformly at random from the pool of stored
samples. The Q-learning update at iteration i uses the following loss
function:

Li hið Þ~ s,a,r,s0ð Þ*U Dð Þ rzc max
a0

Q(s0,a0; h{
i ){Q s,a; hið Þ

# $ 2
" #

in which c is the discount factor determining the agent’s horizon, hi are
the parameters of the Q-network at iteration i and h{

i are the network
parameters used to compute the target at iteration i. The target net-
work parameters h{

i are only updated with the Q-network parameters
(hi) every C steps and are held fixed between individual updates (see
Methods).

To evaluate our DQN agent, we took advantage of the Atari 2600
platform, which offers a diverse array of tasks (n 5 49) designed to be

*These authors contributed equally to this work.
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see Fig. 3, Supplementary Discussion and Extended Data Table 2). In
additional simulations (see Supplementary Discussion and Extended
Data Tables 3 and 4), we demonstrate the importance of the individual
core components of the DQN agent—the replay memory, separate target
Q-network and deep convolutional network architecture—by disabling
them and demonstrating the detrimental effects on performance.

We next examined the representations learned by DQN that under-
pinned the successful performance of the agent in the context of the game
Space Invaders (see Supplementary Video 1 for a demonstration of the
performance of DQN), by using a technique developed for the visual-
ization of high-dimensional data called ‘t-SNE’25 (Fig. 4). As expected,
the t-SNE algorithm tends to map the DQN representation of percep-
tually similar states to nearby points. Interestingly, we also found instances
in which the t-SNE algorithm generated similar embeddings for DQN
representations of states that are close in terms of expected reward but

perceptually dissimilar (Fig. 4, bottom right, top left and middle), con-
sistent with the notion that the network is able to learn representations
that support adaptive behaviour from high-dimensional sensory inputs.
Furthermore, we also show that the representations learned by DQN
are able to generalize to data generated from policies other than its
own—in simulations where we presented as input to the network game
states experienced during human and agent play, recorded the repre-
sentations of the last hidden layer, and visualized the embeddings gen-
erated by the t-SNE algorithm (Extended Data Fig. 1 and Supplementary
Discussion). Extended Data Fig. 2 provides an additional illustration of
how the representations learned by DQN allow it to accurately predict
state and action values.

It is worth noting that the games in which DQN excels are extremely
varied in their nature, from side-scrolling shooters (River Raid) to box-
ing games (Boxing) and three-dimensional car-racing games (Enduro).

Montezuma's Revenge
Private Eye

Gravitar
Frostbite
Asteroids

Ms. Pac-Man
Bowling

Double Dunk
Seaquest

Venture
Alien

Amidar

River Raid
Bank Heist

Zaxxon

Centipede
Chopper Command

Wizard of Wor
Battle Zone

Asterix
H.E.R.O.

Q*bert
Ice Hockey

Up and Down
Fishing Derby

Enduro
Time Pilot

Freeway
Kung-Fu Master

Tutankham
Beam Rider

Space Invaders
Pong

James Bond
Tennis

Kangaroo
Road Runner

Assault
Krull

Name This Game
Demon Attack

Gopher
Crazy Climber

Atlantis
Robotank

Star Gunner
Breakout

Boxing
Video Pinball

At human-level or above

Below human-level

0 100 200 300 400 4,500%500 1,000600

Best linear learner

DQN

Figure 3 | Comparison of the DQN agent with the best reinforcement
learning methods15 in the literature. The performance of DQN is normalized
with respect to a professional human games tester (that is, 100% level) and
random play (that is, 0% level). Note that the normalized performance of DQN,
expressed as a percentage, is calculated as: 100 3 (DQN score 2 random play
score)/(human score 2 random play score). It can be seen that DQN

outperforms competing methods (also see Extended Data Table 2) in almost all
the games, and performs at a level that is broadly comparable with or superior
to a professional human games tester (that is, operationalized as a level of
75% or above) in the majority of games. Audio output was disabled for both
human players and agents. Error bars indicate s.d. across the 30 evaluation
episodes, starting with different initial conditions.
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Mastering the game of Go without 
human knowledge
David Silver1*, Julian Schrittwieser1*, Karen Simonyan1*, Ioannis Antonoglou1, Aja Huang1, Arthur Guez1,  
Thomas Hubert1, Lucas Baker1, Matthew Lai1, Adrian Bolton1, Yutian Chen1, Timothy Lillicrap1, Fan Hui1, Laurent Sifre1, 
George van den Driessche1, Thore Graepel1 & Demis Hassabis1

Much progress towards artificial intelligence has been made using 
supervised learning systems that are trained to replicate the decisions 
of human experts1–4 . However, expert data sets are often expensive, 
unreliable or simply unavailable. Even when reliable data sets are 
available, they may impose a ceiling on the performance of systems 
trained in this manner5. By contrast, reinforcement learning systems 
are trained from their own experience, in principle allowing them to 
exceed human capabilities, and to operate in domains where human 
expertise is lacking. Recently, there has been rapid progress towards this 
goal, using deep neural networks trained by reinforcement learning. 
These systems have outperformed humans in computer games, such 
as Atari6,7  and 3D virtual environments8–10. However, the most chal-
lenging domains in terms of human intellect—such as the game of Go, 
widely viewed as a grand challenge for artificial intelligence11—require 
a precise and sophisticated lookahead in vast search spaces. Fully gene-
ral methods have not previously achieved human-level performance 
in these domains.

AlphaGo was the first program to achieve superhuman performance 
in Go. The published version12, which we refer to as AlphaGo Fan, 
defeated the European champion Fan Hui in October 2015. AlphaGo 
Fan used two deep neural networks: a policy network that outputs 
move probabilities and a value network that outputs a position eval-
uation. The policy network was trained initially by supervised learn-
ing to accurately predict human expert moves, and was subsequently 
refined by policy-gradient reinforcement learning. The value network 
was trained to predict the winner of games played by the policy net-
work against itself. Once trained, these networks were combined with 
a Monte Carlo tree search (MCTS)13–15 to provide a lookahead search, 
using the policy network to narrow down the search to high-probability  
moves, and using the value network (in conjunction with Monte Carlo 
rollouts using a fast rollout policy) to evaluate positions in the tree. A 
subsequent version, which we refer to as AlphaGo Lee, used a similar 
approach (see Methods), and defeated Lee Sedol, the winner of 18 inter-
national titles, in March 2016.

Our program, AlphaGo Zero, differs from AlphaGo Fan and 
AlphaGo Lee12 in several important aspects. First and foremost, it is 

trained solely by self-play reinforcement learning, starting from ran-
dom play, without any supervision or use of human data. Second, it 
uses only the black and white stones from the board as input features. 
Third, it uses a single neural network, rather than separate policy and 
value networks. Finally, it uses a simpler tree search that relies upon 
this single neural network to evaluate positions and sample moves, 
without performing any Monte Carlo rollouts. To achieve these results, 
we introduce a new reinforcement learning algorithm that incorporates 
lookahead search inside the training loop, resulting in rapid improve-
ment and precise and stable learning. Further technical differences in 
the search algorithm, training procedure and network architecture are 
described in Methods.

Reinforcement learning in AlphaGo Zero
Our new method uses a deep neural network fθ with parameters θ. 
This neural network takes as an input the raw board representation s 
of the position and its history, and outputs both move probabilities and 
a value, (p, v) =  fθ(s). The vector of move probabilities p represents the 
probability of selecting each move a (including pass), pa =  Pr(a| s). The 
value v is a scalar evaluation, estimating the probability of the current 
player winning from position s. This neural network combines the roles 
of both policy network and value network12 into a single architecture. 
The neural network consists of many residual blocks4 of convolutional 
layers16,17  with batch normalization18 and rectifier nonlinearities19  (see 
Methods).

The neural network in AlphaGo Zero is trained from games of self-
play by a novel reinforcement learning algorithm. In each position s, 
an MCTS search is executed, guided by the neural network fθ. The 
MCTS search outputs probabilities π of playing each move. These 
search probabilities usually select much stronger moves than the raw 
move probabilities p of the neural network fθ(s); MCTS may therefore 
be viewed as a powerful policy improvement operator20,21. Self-play 
with search—using the improved MCTS-based policy to select each 
move, then using the game winner z as a sample of the value—may 
be viewed as a powerful policy evaluation operator. The main idea of 
our reinforcement learning algorithm is to use these search operators 

A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in 
challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The 
tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were 
trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce 
an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game 
rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also 
the winner of AlphaGo’s games. This neural network improves the strength of the tree search, resulting in higher quality 
move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved 
superhuman performance, winning 100–0 against the previously published, champion-defeating AlphaGo.

1 DeepMind, 5 New Street Square, London EC4A 3TW, UK.
*These authors contributed equally to this work.
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either separate policy and value networks, as were used in AlphaGo 
Lee, or combined policy and value networks, as used in AlphaGo Zero; 
and using either the convolutional network architecture from AlphaGo 
Lee or the residual network architecture from AlphaGo Zero. Each  
network was trained to minimize the same loss function (equation (1)),  
using a fixed dataset of self-play games generated by AlphaGo Zero 
after 72  h of self-play training. Using a residual network was more 
accurate, achieved lower error and improved performance in AlphaGo 
by over 600 Elo. Combining policy and value together into a single  
network slightly reduced the move prediction accuracy, but reduced the 
value error and boosted playing performance in AlphaGo by around 

another 600 Elo. This is partly due to improved computational effi-
ciency, but more importantly the dual objective regularizes the network  
to a common representation that supports multiple use cases.

Knowledge learned by AlphaGo Zero
AlphaGo Zero discovered a remarkable level of Go knowledge dur-
ing its self-play training process. This included not only fundamental 
elements of human Go knowledge, but also non-standard strategies 
beyond the scope of traditional Go knowledge.

Figure 5 shows a timeline indicating when professional joseki  
(corner sequences) were discovered (Fig. 5a and Extended Data  
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Figure 5 | Go knowledge learned by AlphaGo Zero. a, Five human joseki 
(common corner sequences) discovered during AlphaGo Zero training. 
The associated timestamps indicate the first time each sequence occurred 
(taking account of rotation and reflection) during self-play training. 
Extended Data Figure 2  provides the frequency of occurence over training 
for each sequence. b, Five joseki favoured at different stages of self-play 
training. Each displayed corner sequence was played with the greatest 
frequency, among all corner sequences, during an iteration of self-play 
training. The timestamp of that iteration is indicated on the timeline. At 
10 h a weak corner move was preferred. At 47 h the 3–3 invasion was most 
frequently played. This joseki is also common in human professional play; 

however AlphaGo Zero later discovered and preferred a new variation. 
Extended Data Figure 3 provides the frequency of occurence over time 
for all five sequences and the new variation. c, The first 80 moves of three 
self-play games that were played at different stages of training, using 1,600 
simulations (around 0.4 s) per search. At 3 h, the game focuses greedily 
on capturing stones, much like a human beginner. At 19  h, the game 
exhibits the fundamentals of life-and-death, influence and territory. At 
70 h, the game is remarkably balanced, involving multiple battles and a 
complicated ko fight, eventually resolving into a half-point win for white. 
See Supplementary Information for the full games.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Q-learning

• Agent in an environment described by a state s.

•  Agent takes actions a to move between states, s -> s’.

• Reward (positive or negative) r is given depending on state/action. 

• Agent learns policy, π(s,a), to navigate environment for optimal accumulated 

reward (return) by exploring.  

Difficult if big world with many states and actions


Use Artificial Neural Network to represent Q-function

Deep Q-learning

Q-function (action-value fcn) Q(s,a) quantifies expected return 
from taking action a in state s and subsequently following the optimal policy.

Explore to get reward and learn Q => optimal policy

Q(s, a) = r + �max
a0

Q(s0, a0)

γ<1 is discounting factor, better to get reward now than later

Mats Granath, MLQT, Erlangen 2019



Q-learning for the toric code

state is a syndrome

action is a bitflip=cardinal move of defect 


reward, r=-1 per move (i.e. we aim to learn MWPM)

s

Sy
nd

ro
m

e

O
bs

er
va

tio
n

Perspective 1 Perspective 4Perspective 2 Perspective 3

Use deep Q-learning

State space is very big 
number of ways of placing NS defects on d2 sites:
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⇠ 1013 for d=7 and p=10%

Mats Granath, MLQT, Erlangen 2019



s

Sy
nd

ro
m

e

O
bs

er
va

tio
n

Perspective 1 Perspective 4Perspective 2 Perspective 3

Efficient implementation of Q-network 
Use translational and rotational symmetry 

to center each defect.

Convolutional NN
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Deep Q-network

Network gives Q-values for the 4 movements of the central defect.

Crucial simplification, fixed number (4) actions, and doesn’t have to learn about boundaries. 

Table 2: Network architecture d=7.
# Type Size # parameters
0 Input 7x7
1 Conv. 512 filters; 3x3 size;

2-2 stride 5 120
2 FC 256 neurons 1 179 904
3 FC 128 neurons 32 896
4 FC 64 neurons 8 256
5 FC 32 neurons 2 080
6 FC (out) 4 neurons 132

1 228 388

Figure 9: Early training convergence of the Q network agent.
Success rate Ps versus number of iterations. One iteration
corresponds to annihilating all the defects of a single syn-
drome. (The very early below 1/4 success rate is an artifact
of using a max count for the number of error correcting steps
for the validation.)

isolated error creates a defect pair and there are 2d2

physical qubits.
In Figure 9 we also provide an example of the ini-

tial convergence of the algorithm for lattice size d◊d,
with d = 3, 5, 7. Here, each iteration corresponds to
solving one syndrome and making the corresponding
number of mini-batch training sessions from the expe-
rience bu↵er, as explained in section 3.2. A constant
set of syndromes is used for the testing so that fluc-
tuations correspond to actual performance variations
of the agent.

In Table 3 we list the hyperparameters related to
the Q-learning and experience replay set-up, as well as
the neural network training algorithm used. The full
RL algorithm is coded in Python using Tensorflow and
Keras for the Q-network. A single desktop computer
was used, with training converging over a matter of
hours (for d = 3) to days (for d = 7).

Table 3: Hyperparameters
Parameter Value
discount rate “ 0.95
reward r -1/step; 0 at finish
exploration ‘ 0.1
max steps per syndrome 50
mini batch size, N 32
target network update rate 100
memory bu�er size 1 000 000
optimizer ’Adam’
learning rate 0.001
beta1 0.9
beta2 0.999
decay 0.0

11

✓
d2

Ns

◆
⇡

✓
49

20

◆
⇠ 1013

Significant reduction in number of parameters. 

Size of state space for d=7, and NS=20 defects (10% error)

Experience replay is crucial for training
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Results. Converged Q-network.
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a b
4-steps to elimination

Q network predictions for it, upgrading the network
parameters schematically according to ≠Ò◊

q
i
(yi ≠

Q(Pi, ai, ◊))2 . A new training sequence is then
started, and with some specified rate, the weights of
the target Q network are synchronized with the Q
network. A pseudocode description of the procedure
is presented in algorithm 1 and an illustration of the
di↵erent components and procedures of the training
algorithm and how they relate to each other is found
in Figure 5.

4 Result
Data sets with a fixed error rate of 10% were gener-
ated to train the agent to operate on a code of a spec-
ified size. The syndromes in a data set is fed one at a
time to the agent, which operates on it until no errors
remain. The data sets also contain information about
the physical qubit configuration (the hidden state) of
the lattice, which (as discussed in section 3) is used
to check the success rate of the decoder. This is com-
pared to the performance of the MWPM decoder on
the same syndromes [39].

The proficiency of the well converged agents are
shown in figures 6 and 7 as compared to the MWPM
performance. Given our specified reward scheme,
which corresponds to using as few operations as pos-
sible, we achieve near optimal results with a perfor-
mance which is close to that of the MWPM decoder.
For small error rates pL æ 0 it is possible to de-
rive an exact expression for the MWPM fail rate pL

(see Appendix A and [22, 40]) by explicitly identifying
the dominant type of error string. We have checked
explicitly that our Q-network agent is equivalent to
MWPM for these error strings and thus gives the same
asymptotic performance.

For larger system sizes d Ø 9 we were not success-
ful at converging to close to MWPM performance.
We expect that this can be resolved by using a larger
neural network and parallelizing the exploration, to
be explored in future work.

As a demonstration of the operation of the trained
agent and the corresponding Q-network we present
in Figure 8 the action values Q(S, a) for two di↵er-
ent syndromes. (As discussed previously, Q(S, a) =
{Q(P, a, ◊)}P œO, where O is the observation, or set
of perspectives, corresponding to the syndrome S.)
The size of the arrows are proportional to the dis-
counted return R of moving a defect one initial step
in the direction of the arrow and then following the
optimal policy. In Fig. 8a, the values are written out
explicitly. The best (equivalent) moves have a return
R = ≠3.57 which corresponds well to the correct value
R = ≠1 ≠ “ ≠ “2 ≠ “3 = ≠3.62 for following the op-
timal policy to annihilate the defects in four steps,
with reward r = ≠1 and discount rate “ = .95. Fig-
ure 8b shows a seemingly challenging syndrome where
the fact that the best move does not correspond to

Figure 6: Error correction success rate ps of the converged
agents versus bit-flip error rate p, for system size d = 3, 5, 7,
and compared to the corresponding results using MWPM
(lines). (The MWPM decoder for d = 30 is included as a
reference for the approach to large d.)

Figure 7: Error correction fail rate pL = 1 ≠ ps shown to
converge to the known asymptotic MWPM behavior (Ap-
pendix A) for small error rates p æ 0. The lines correspond
to pL ≥ p

x, with x = Ád/2Ë = 2, 3, 4 for d = 3, 5, 7 fitted to
the lowest p data point.

7

� = 0.95
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(semi-) quantitatively correct Q-values
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Results

Logical success-rate, large error rates 
close to MWPM

bit flip error rate

Logical fail-rate, small error rates 
identical to MWPM
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A Small error rate
As discussed by Fowler et al.[22, 40] the likely oper-
ating regime of surface code is in the limit of small
error rate p π 1. In addition, in the limit p æ 0 we
can derive an exact expression for the rate of logical
failure under the assumption of MWPM error correc-
tion, thus providing a solid benchmark for our RL
algorithm. Such expressions were derived for the sur-
face code in [40] and here we derive the corresponding
expression for bit-flip errors in the toric code.

Consider first the case of code distance d with d œ
odd, which is what we have assumed in the present
work. (Using odd d gives an additional simplification
of the Q-learning set-up from the fact that any pla-
quette can be considered the center of the lattice.) As
a reminder, the error formulation we use is that ev-
ery physical qubit has a probability p of bit-flip error,
and probability 1 ≠ p of no error. (In contrast to [40]
we don’t consider ‡y errors, which would give rise to
both bit-flip and phase-flip errors.) For very low p,
we only need consider states with the minimal num-
ber of bit-flip errors that may cause a logical failure.
One can readily be convinced (from a few examples)
that such states are ones where a number Ád/2Ë (e.g.
Á7/2Ë = 4) of errors are placed along the path of the
shortest possible non-trivial (logical) loops. The lat-
ter are d sites long, and on the torus there are 2d
such loops. For such a state MWPM will always fail,
because it will provide a correction string which has
Âd/2Ê bit-flips rather than the Ád/2Ë flips needed to

make a successful error correction. The former correc-
tion string, together with the initial error string, will
sum to one of the non-trivial (shortest length) loops
and give rise to a logical bit-flip. The fail-rate pL, i.e.
the fraction of logical fails of all generated syndromes,
is thus to lowest order in p and for odd d given by

pL = 2d

3
d

Ád/2Ë

4
pÁd/2Ë . (4)

Here 2d is the number of shortest non-trivial loops,!
d

Ád/2Ë
"
is the number of ways of placing the errors on

such a loop, and pÁd/2Ë is the lowest order term in the
probability (pÁd/2Ë(1 ≠ p)2d

2≠Ád/2Ë) of any particular
state with Ád/2Ë errors.
Considering d even (for reference), the correspond-

ing minimal fail scenario has d/2 errors on a length
d loop. Here the MWPM has a 50% chance of con-
structing either a non-trivial or trivial loop, thus giv-
ing the asymptotic fail rate pL = d

!
d

d/2
"
pd/2.

B Network architecture and training
parameters
The reinforcement learning agent makes use of a deep
convolutional neural network to approximate the Q
values for the possible actions of each defect. The
network (see Fig. 3) consists of an input layer which
is d◊d matrix corresponding to a perspective (binary
input, 0 or 1, with 1 corresponding to a defect), and a
convolutional layer followed by several fully-connected
layers and an output layer consisting of four neurons,
representing each of the four possible actions. All lay-
ers have ReLU activation functions except the output
layer which has simple linear activation.

Table 1: Network architecture d=5. FC=Fully connected
# Type Size # parameters
0 Input 5x5
1 Conv. 512 filters; 3x3 size;

2-2 stride 5 120
2 FC 256 neurons 524 544
3 FC 128 neurons 32 896
4 FC 64 neurons 8 256
5 FC 32 neurons 2 080
6 FC (out) 4 neurons 132

573 028

The network architecture is summarized in Table
1 and 2. We also included explicitly a count of the
number of parameters (weights and biases) to em-
phasize the huge reduction compared to tabulating

the Q-function. The latter requires of the order
!

d
2

NS

"

entries, for Ns defects, where Ns will also vary as the
syndrome is reduced, with initially NS ≥ 4pd2 as each

10

Fits asymptotic 

form for small p:Philip Andreasson, Joel Johansson, Simon Liljestrand, Mats Granath, arXiv:1811.12338

https://arxiv.org/search/quant-ph?searchtype=author&query=Andreasson%2C+P
https://arxiv.org/search/quant-ph?searchtype=author&query=Johansson%2C+J
https://arxiv.org/search/quant-ph?searchtype=author&query=Liljestrand%2C+S


Depolarizing noise, work in progress

MWPM Reinforcement trained solver 
reward=annihilation of complete syndrome + small intermediate reward  

No logical operation

The agent can use Y to take advantage of correlations 
between bit-flip and phase-flip errors 

Example syndrome

Mats Granath, MLQT, Erlangen 2019
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Preliminary performance of RL solver for depolarizing noise

Outperforms MWPM
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Deep Q-networks

---------------------------------------------------------------- 
        Layer (type)               Output Shape         Param # 
==============================================
================== 
            Conv2d-1            [-1, 128, 5, 5]           2,432 
            Conv2d-2            [-1, 128, 5, 5]         147,584 
            Conv2d-3            [-1, 120, 5, 5]         138,360 
            Conv2d-4            [-1, 111, 5, 5]         119,991 
            Conv2d-5            [-1, 104, 5, 5]         104,000 
            Conv2d-6            [-1, 103, 5, 5]          96,511 
            Conv2d-7             [-1, 90, 5, 5]          83,520 
            Conv2d-8             [-1, 80, 5, 5]          64,880 
            Conv2d-9             [-1, 73, 5, 5]          52,633 
           Conv2d-10             [-1, 71, 5, 5]          46,718 
           Conv2d-11             [-1, 64, 3, 3]          40,960 
           Linear-12                    [-1, 3]           1,731 
==============================================
================== 
Total params: 899,320

---------------------------------------------------------------- 
        Layer (type)               Output Shape         Param # 
================================================================ 
            Conv2d-1            [-1, 200, 7, 7]           3,800 
            Conv2d-2            [-1, 190, 7, 7]         342,190 
            Conv2d-3            [-1, 189, 7, 7]         323,379 
            Conv2d-4            [-1, 160, 7, 7]         272,320 
            Conv2d-5            [-1, 150, 7, 7]         216,150 
            Conv2d-6            [-1, 132, 7, 7]         178,332 
            Conv2d-7            [-1, 128, 7, 7]         152,192 
            Conv2d-8            [-1, 120, 7, 7]         138,360 
            Conv2d-9            [-1, 111, 7, 7]         119,991 
           Conv2d-10            [-1, 104, 7, 7]         104,000 
           Conv2d-11            [-1, 103, 7, 7]          96,511 
           Conv2d-12             [-1, 90, 7, 7]          83,520 
           Conv2d-13             [-1, 80, 7, 7]          64,880 
           Conv2d-14             [-1, 73, 7, 7]          52,633 
           Conv2d-15             [-1, 71, 7, 7]          46,718 
           Conv2d-16             [-1, 64, 5, 5]          40,960 
           Linear-17                    [-1, 3]           4,803 
================================================================ 
Total params: 2,240,739

distance 5 code
distance 7 code

trained on desktop GPU for 5 hours 
(using PyTorch) trained on desktop GPU for 12 hours

Unnecessarily deep?  
Mats Granath, MLQT, Erlangen 2019



Conclusions

Deep Q-learning works well for error correction on toric code.  
Can match or even outperform MWPM (for moderate code distance) 

But, does require quite deep Q-networks 

Periodic boundaries important for our approach.  

Philip Andreasson, Joel Johansson, Simon Liljestrand, Mats Granath, arXiv:1811.12338

Mattias Eliasson, David Fitzek, MG, in progress

Future challenges: 

• Larger code distances 
• Improve reward scheme, use actual success or failure of error correction 
• Include syndrome measurement error. (R. Sweke et al, arXiv:1810.07207) 
• Surface code with boundaries. (Tougher due to lack of translational invariance)

https://arxiv.org/search/quant-ph?searchtype=author&query=Andreasson%2C+P
https://arxiv.org/search/quant-ph?searchtype=author&query=Johansson%2C+J
https://arxiv.org/search/quant-ph?searchtype=author&query=Liljestrand%2C+S

