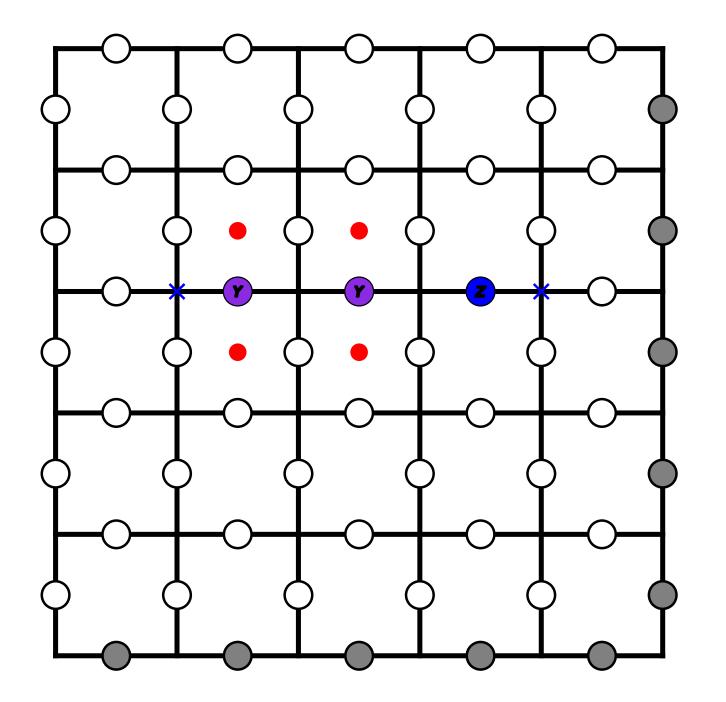
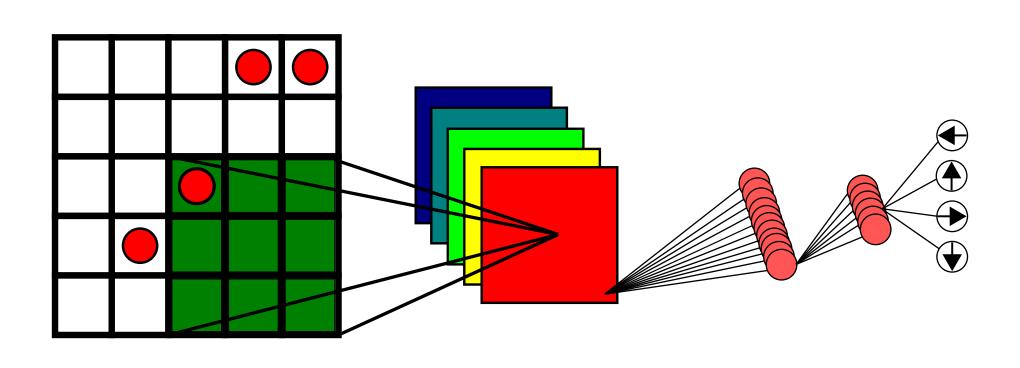
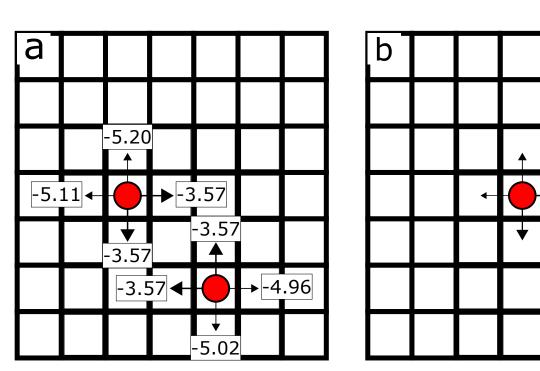
Quantum error correction for the toric code using deep reinforcement learning

Mats Granath
Department of Physics
University of Gothenburg

Machine Learning for Quantum Technology
Max Planck Institute for the Science of Light
May 9th, 2019







Bottom line

We do the "simplest" error correction problem for a topological code

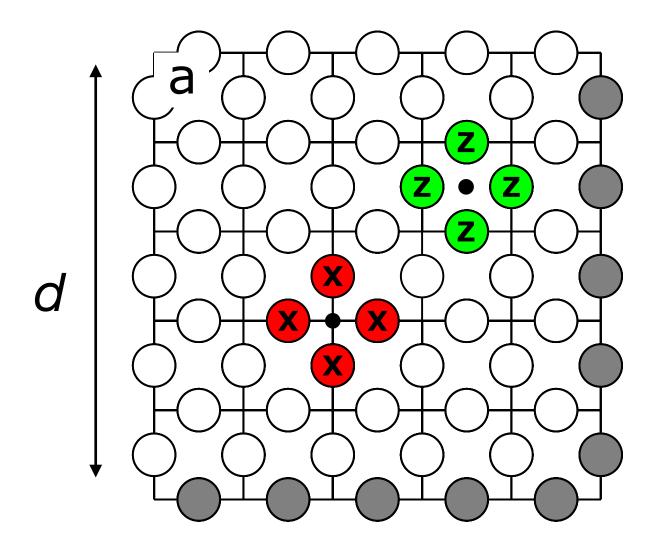
- Periodic boundary conditions
- No measurement noise/perfect syndrome
- only bit flip noise (initially, can also do depolarizing)

Still challenging for reinforcement learning: deep Q-networks needed Allows for easy benchmark

Fault-tolerant quantum computation by anyons

A.Yu. Kitaev*

L.D. Landau Institute for Theoretical Physics, 117940, Kosygina St. 2, Germany
Received 20 May 2002



JOURNAL OF MATHEMATICAL PHYSICS

Topological quantum memory^{a)}

Eric Dennis^{b)}

Princeton University, Princeton, New Jersey 08544

Alexei Kitaev,^{c)} Andrew Landahl,^{d)} and John Preskill^{e)} *Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125*

$$H = -\sum_{\alpha} \hat{P}_{\alpha} - \sum_{\nu} \hat{V}_{\nu}$$

$$\hat{V}_{\nu} = \prod_{i \in \alpha} \sigma_{i}^{z}$$

$$\hat{V}_{\nu} = \prod_{i \in \nu} \sigma_{i}^{x}$$

Plaquette and Vertex stabilizers (parity checks)

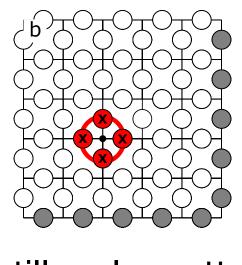
2d² physical qubits, 2d²-2 independent stabilizers

Ground state

consider:

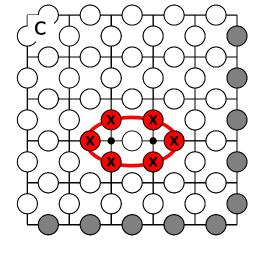
plaquette operator ground state:

act with vertex op:



still a plaquette ground state

act with two vertex op:



still a plaquette ground state

GS is symmetric superposition of all *trivial* loops:

$$|GS_0\rangle = \sum_{i \in \text{all trivial loops}} |Oop_i| \uparrow \uparrow \uparrow \uparrow \cdots \rangle$$

highly entangled

Ground state degeneracy

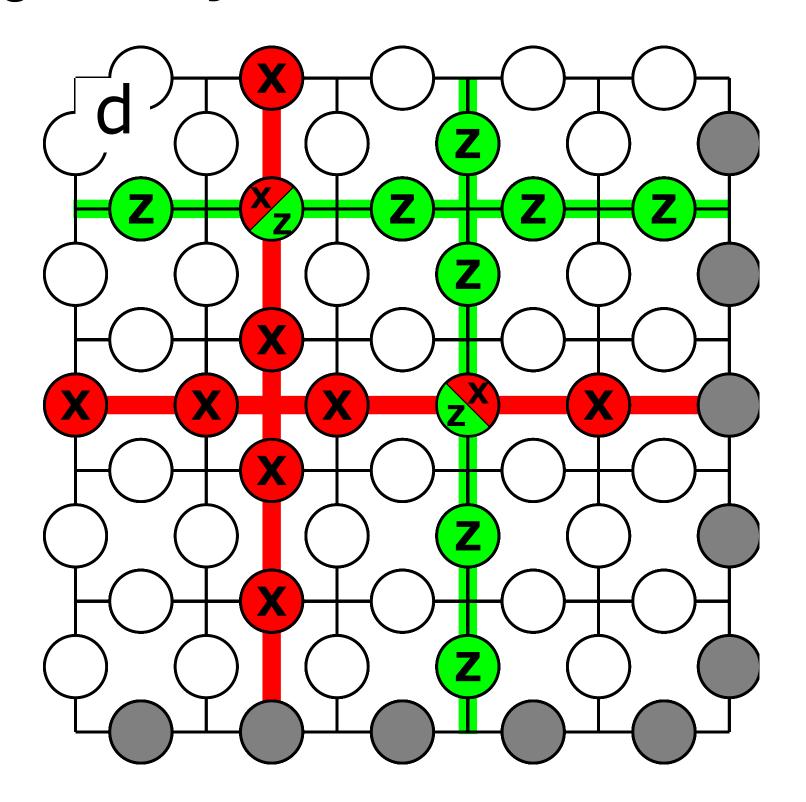
Non-trivial loops (encircling torus) X₁, X₂ are not products of vertex operators.

Four ground states/The logical qubit

$$\{|GS_0\rangle, X_1|GS_0\rangle, X_2|GS_0\rangle, X_2X_1|GS_0\rangle\}$$

Distinguished by ± 1 eigenvalues of Z_1 and Z_2 .

Corresponding to $2(d^2-1)$ independent stabilizers on $2d^2$ physical qubits.

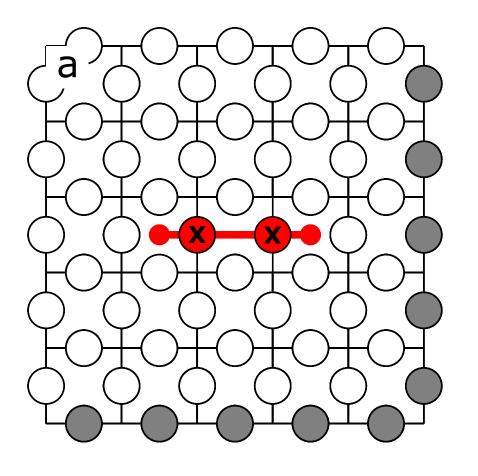


Topologically protected qubit

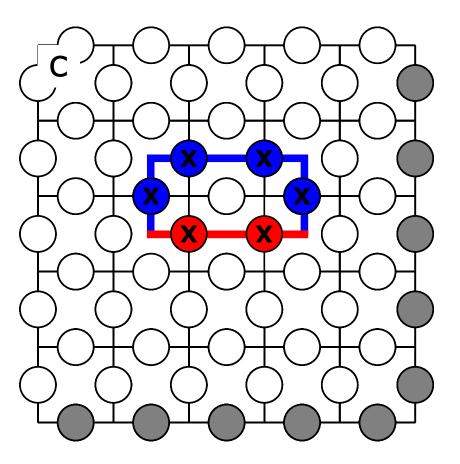
Non-trivial loops=Logical bit-flip operators Requires at least *d* physical bit-flip errors **code distance** *d* The syndrome (defects/bad plaquettes), is quantum non-demolition measurement

Ex.

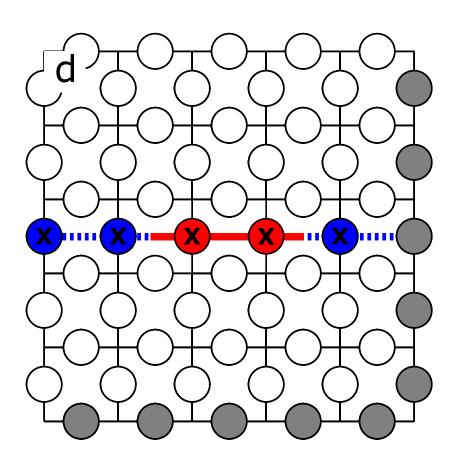
two neighbouring bit flip errors, two defects



proper error correction trivial loop



failed error correction non-trivial loop



Standard algorithm to suggest error correcting strings:

Minimum Weight Perfect Matching (MWPM)/Blossom

J. Edmunds, 1965

Find shortest total correction string. (Which is the most likely)

Error models

Depolarizing

- (1-p) no error
- p/3 X
- p/3 Y=XZ
- p/3 Z

Uncorrelated

- (1-p)² no error
- p(1-p) X
- $p^2 Y=XZ$
- p(1-p) Z

Bit- and phase-flip errors (i.e. plaquette and vertex errors). are independent. Corrected separately.

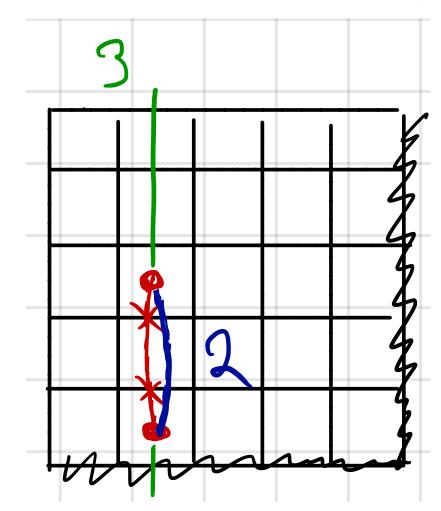
MWPM is (near) optimal

Minimum Weight Perfect Matching Low-p fail rate for bit-flip errors

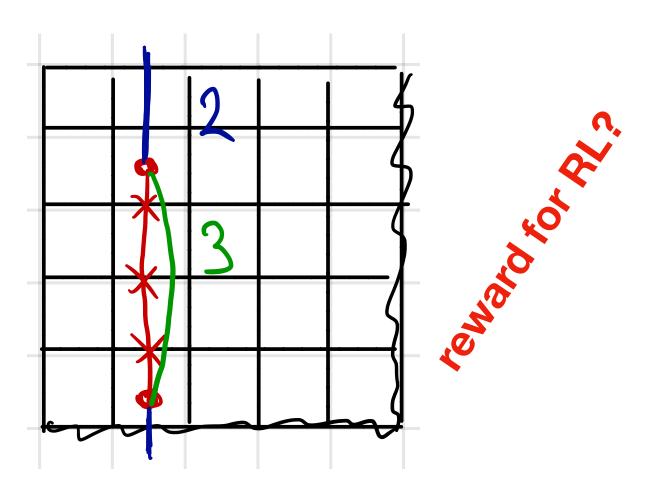
For p -> 0 we only need to consider error chains with minimal number of errors that can give failed error correction

Consider *d*=5:

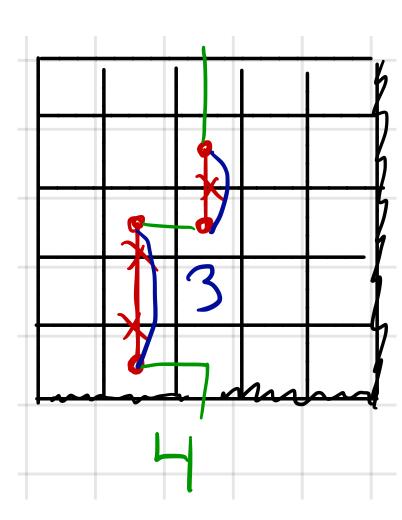
Two errors is always corrected successfully



Three errors in a row always gives failed error correction



Three errors not in a row always gives successful correction



MWPM asymptotic (lowest order in *p*) fail rate is:

$$p_L = 2d \binom{d}{\lceil d/2 \rceil} p^{\lceil d/2 \rceil}$$

Deep reinforcement learning/Deep Q-learning

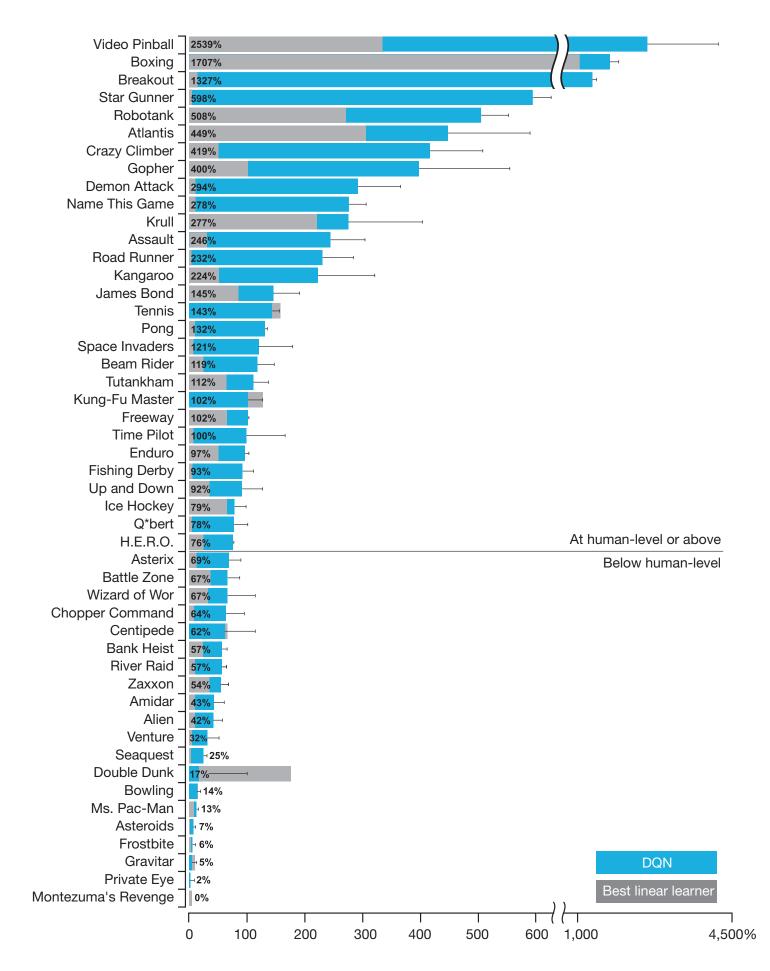
LETTER

2015

doi:10.1038/nature14236

Human-level control through deep reinforcement learning

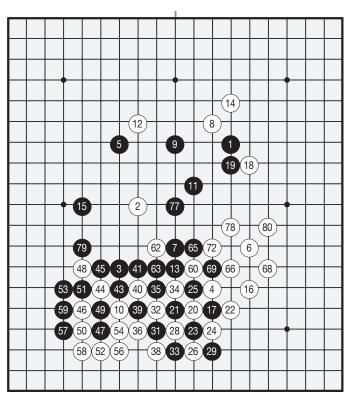
Volodymyr Mnih¹*, Koray Kavukcuoglu¹*, David Silver¹*, Andrei A. Rusu¹, Joel Veness¹, Marc G. Bellemare¹, Alex Graves¹, Martin Riedmiller¹, Andreas K. Fidjeland¹, Georg Ostrovski¹, Stig Petersen¹, Charles Beattie¹, Amir Sadik¹, Ioannis Antonoglou¹, Helen King¹, Dharshan Kumaran¹, Daan Wierstra¹, Shane Legg¹ & Demis Hassabis¹



2017

Mastering the game of Go without human knowledge

David Silver¹*, Julian Schrittwieser¹*, Karen Simonyan¹*, Ioannis Antonoglou¹, Aja Huang¹, Arthur Guez¹, Thomas Hubert¹, Lucas Baker¹, Matthew Lai¹, Adrian Bolton¹, Yutian Chen¹, Timothy Lillicrap¹, Fan Hui¹, Laurent Sifre¹, George van den Driessche¹, Thore Graepel¹ & Demis Hassabis¹



AlphaStar 2019

Q-learning

- Agent in an environment described by a state s.
- Agent takes actions a to move between states, s -> s'.
- **Reward** (positive or negative) *r* is given depending on state/action.
- Agent learns **policy**, $\pi(s,a)$, to navigate environment for optimal accumulated reward (return) by exploring.

Q-function (action-value fcn) Q(s,a) quantifies expected return from taking action a in state s and subsequently following the optimal policy.

$$Q(s, a) = r + \gamma \max_{a'} Q(s', a')$$

γ<1 is discounting factor, better to get reward now than later

Explore to get reward and learn Q => optimal policy

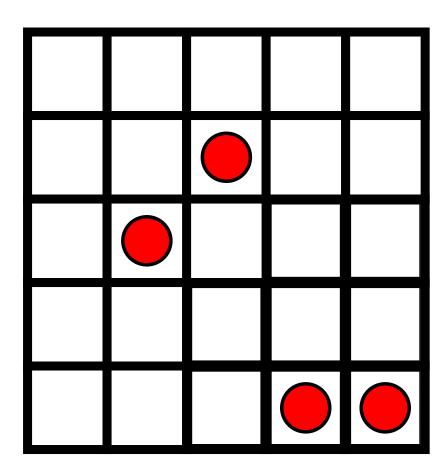
Difficult if big world with many states and actions

Use Artificial Neural Network to represent Q-function

Deep Q-learning

Q-learning for the toric code

state is a syndrome
action is a bitflip=cardinal move of defect
reward, r=-1 per move (i.e. we aim to learn MWPM)



State space is very big

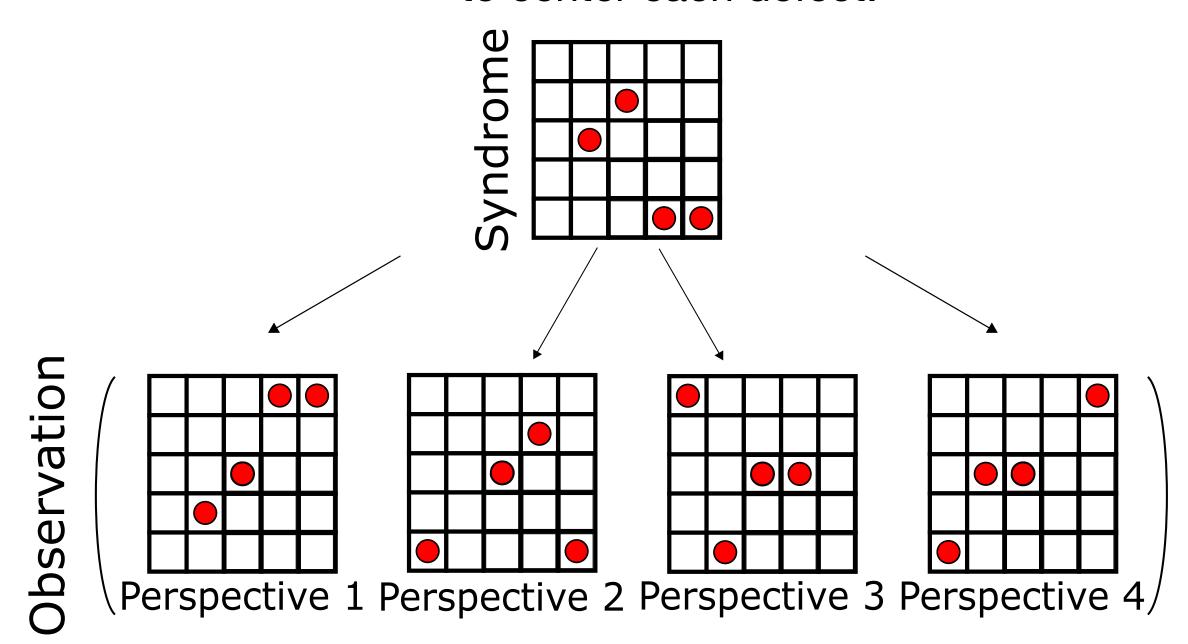
number of ways of placing N_S defects on d^2 sites:

$$\binom{d^2}{N_{\rm S}} pprox \binom{49}{20} \sim 10^{13}$$
 for d=7 and p=10%

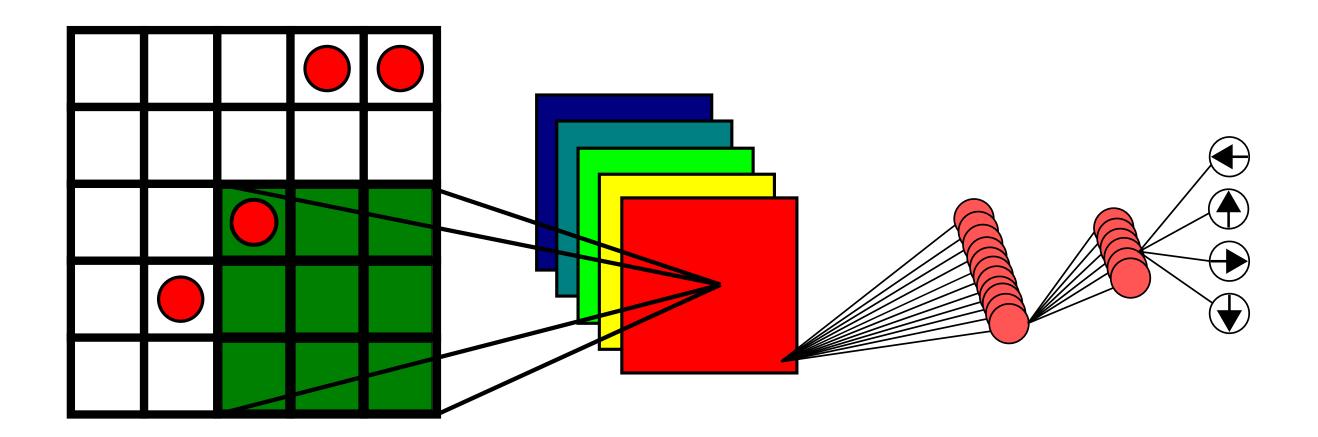
Use deep Q-learning

Efficient implementation of Q-network

Use translational and rotational symmetry to center each defect.



Convolutional NN



Deep Q-network

Network gives Q-values for the 4 movements of the **central** defect. Crucial simplification, fixed number (4) actions, and doesn't have to learn about boundaries.

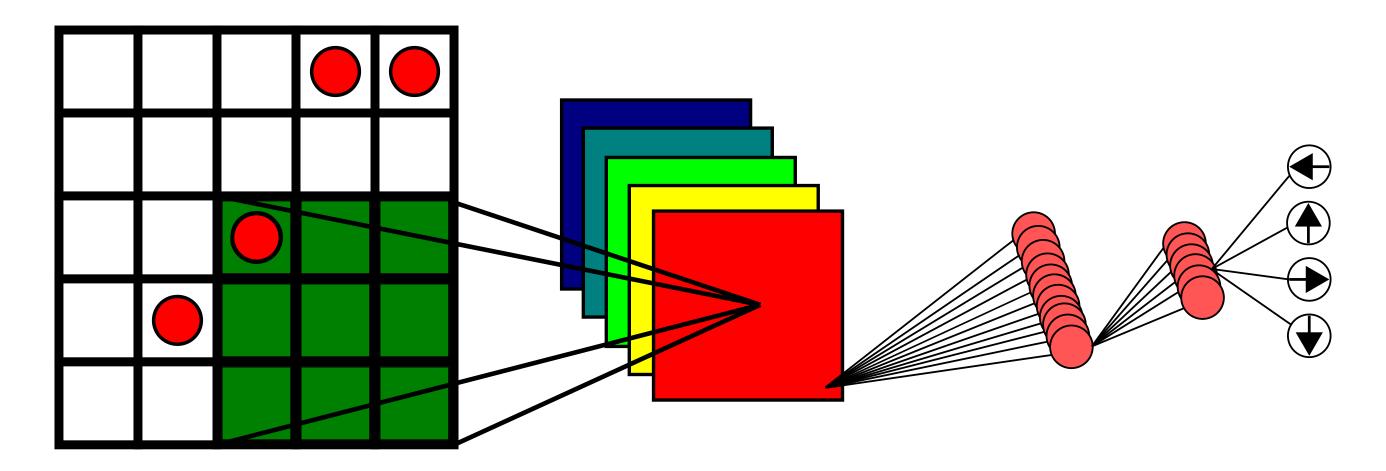


Table 2: Network architecture d=7.

#	Type	Size	# parameters
0	Input	7x7	
1	Conv.	512 filters; 3x3 size;	
		2-2 stride	5 120
2	FC	256 neurons	1 179 904
3	FC	128 neurons	32 896
$\mid 4 \mid$	FC	64 neurons	8 256
5	FC	32 neurons	2 080
6	FC (out)	4 neurons	132
			1 228 388

Experience replay is crucial for training

Significant reduction in number of parameters. Size of state space for d=7, and N_S=20 defects (10% error)

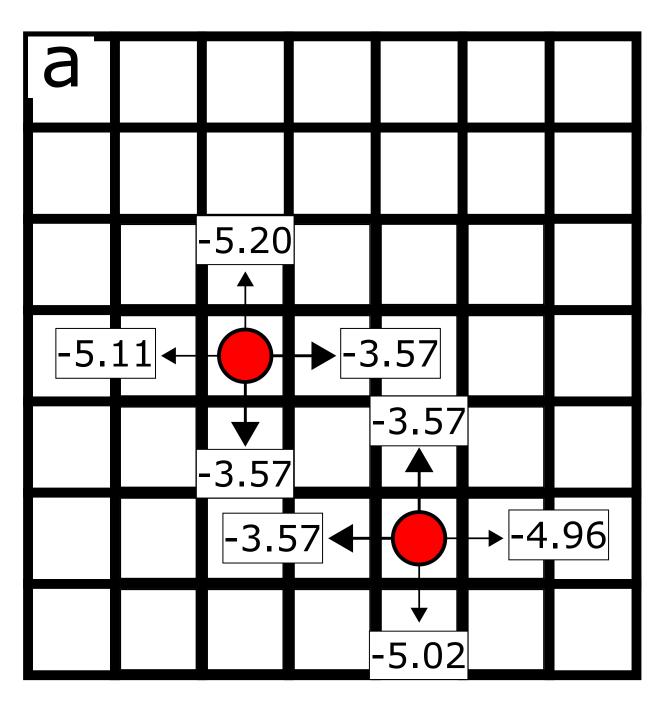
$$\binom{d^2}{N_s} \approx \binom{49}{20} \sim 10^{13}$$

Results. Converged Q-network.

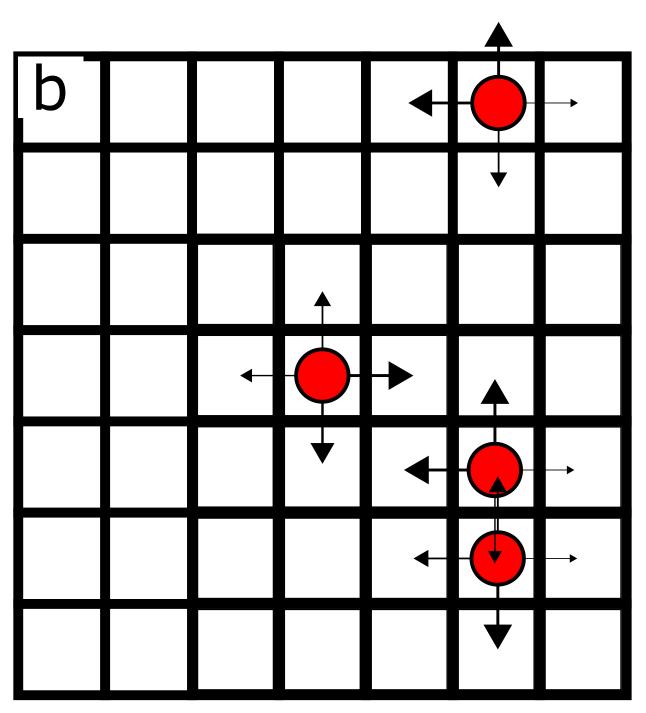
Examples:

Large arrow=Large Q-value for that action

4-steps to elimination



Shortest total path (MWPM)



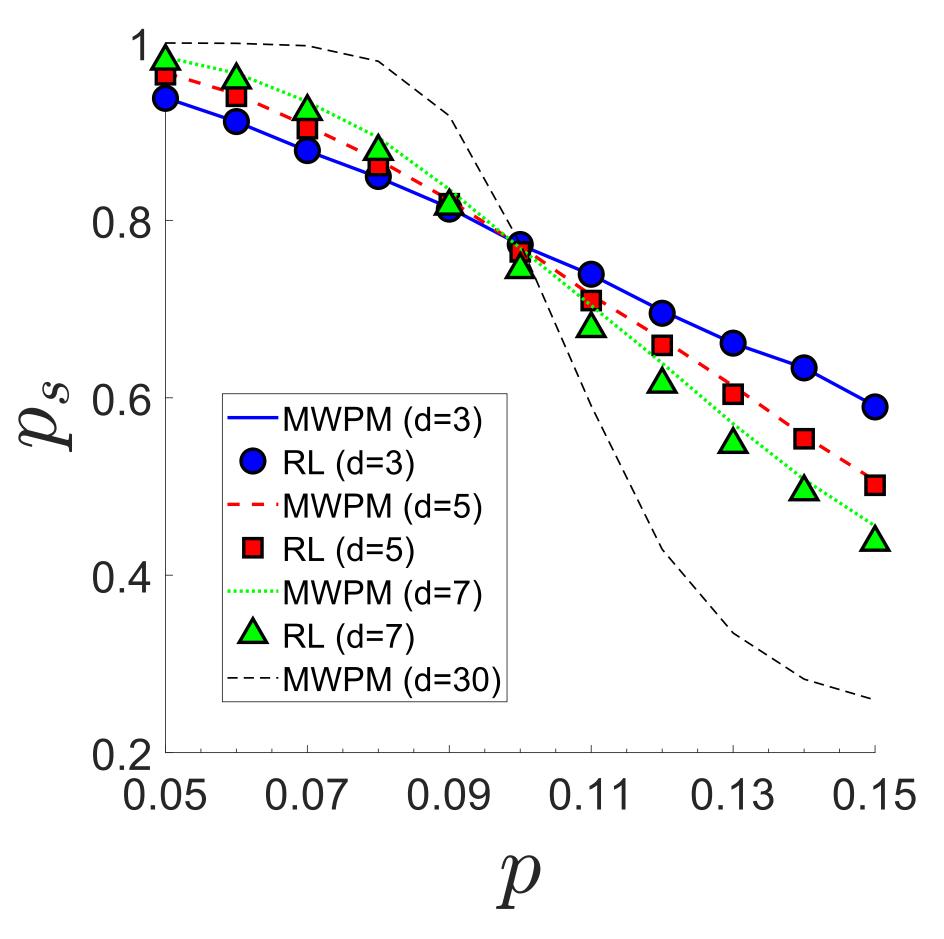
$$R = -1 - \gamma - \gamma^2 - \gamma^3 = -3.62$$

 $\gamma = 0.95$

(semi-) quantitatively correct Q-values

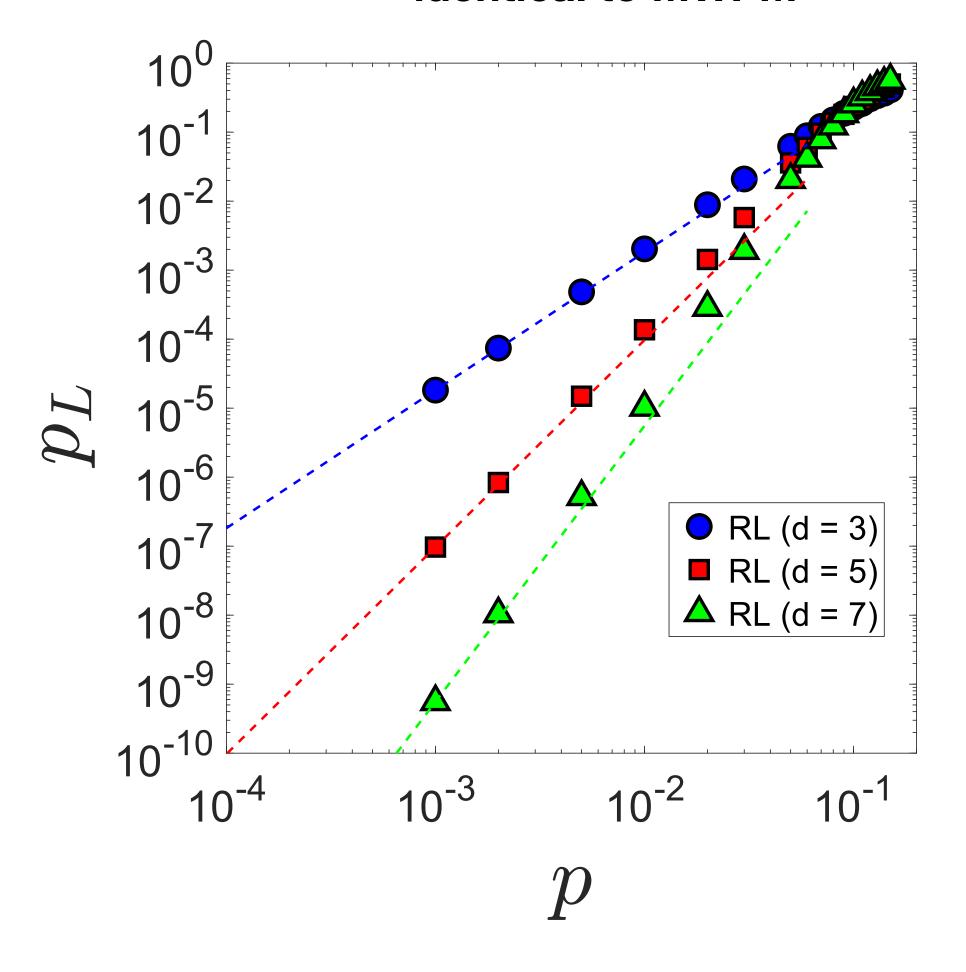
Results

Logical success-rate, large error rates close to MWPM



bit flip error rate

Logical fail-rate, small error rates identical to MWPM



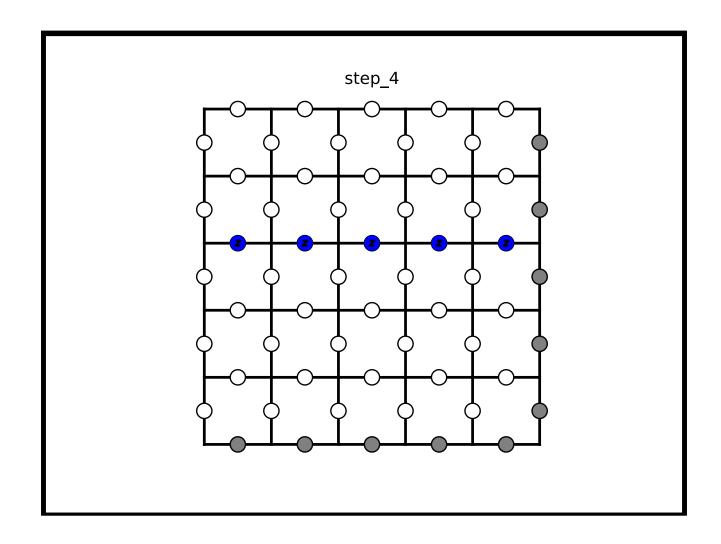
Fits asymptotic form for small p:

$$p_L = 2d \binom{d}{\lceil d/2 \rceil} p^{\lceil d/2 \rceil}$$

Depolarizing noise, work in progress

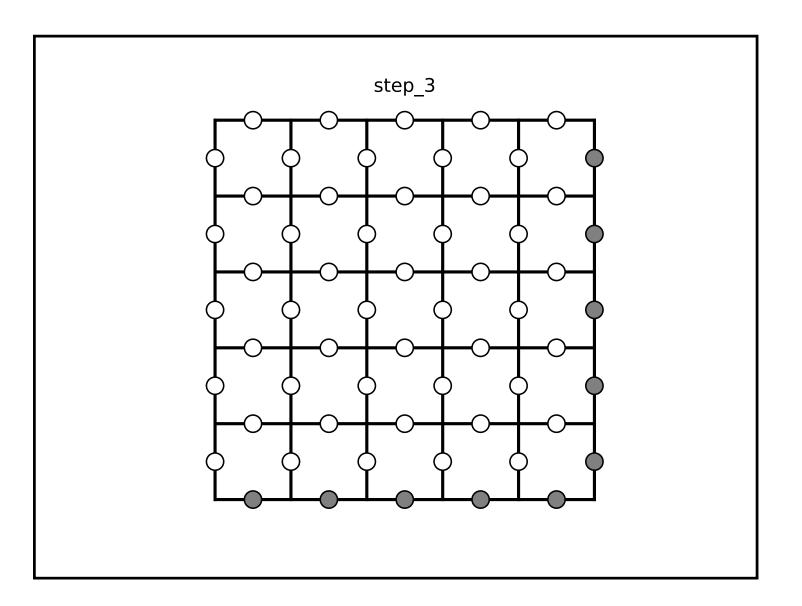
Example syndrome

MWPM



logical phase-flip

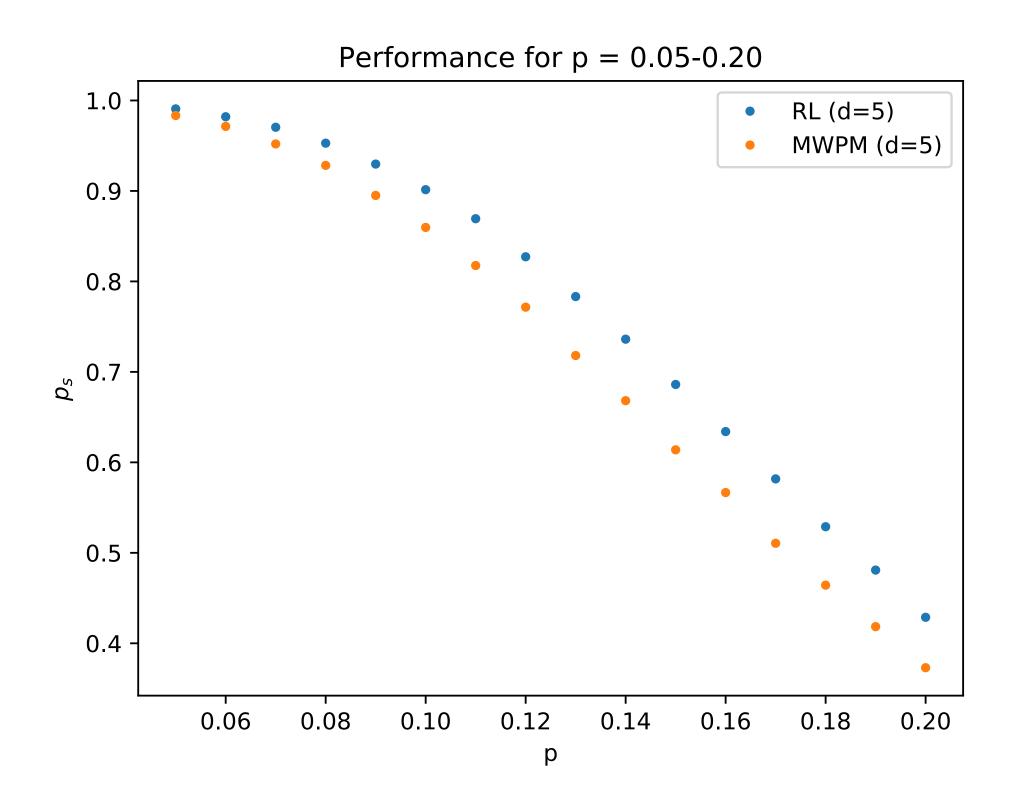
Reinforcement trained solver reward=annihilation of complete syndrome + small intermediate reward



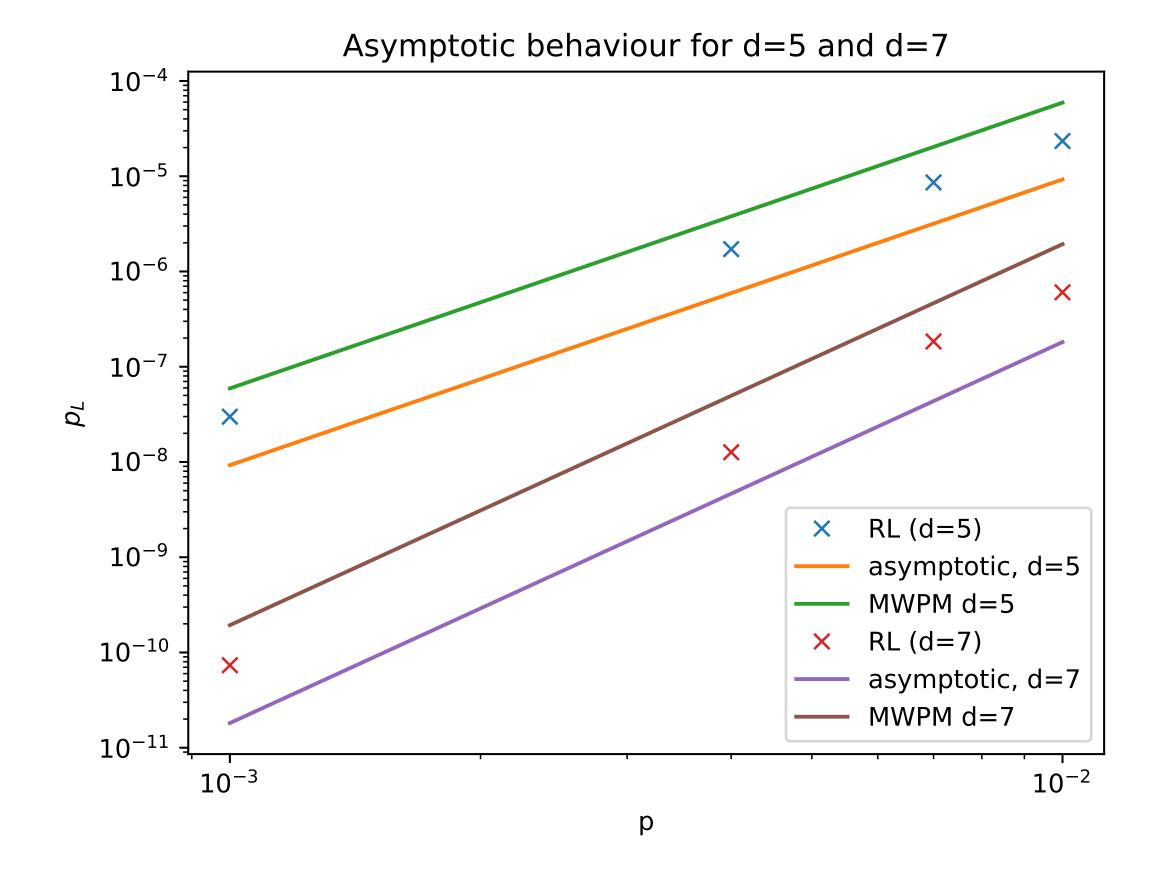
No logical operation

The agent can use Y to take advantage of correlations between bit-flip and phase-flip errors

Preliminary performance of RL solver for depolarizing noise



Outperforms MWPM



Deep Q-networks

distance 5 code

Layer (type)	Output Shape	Param #
:========	======================================	
Conv2d-1	[-1, 128, 5, 5]	2,432
Conv2d-2	[-1, 128, 5, 5]	147,584
Conv2d-3	[-1, 120, 5, 5]	138,360
Conv2d-4	[-1, 111, 5, 5]	119,991
Conv2d-5	[-1, 104, 5, 5]	104,000
Conv2d-6	[-1, 103, 5, 5]	96,511
Conv2d-7	[-1, 90, 5, 5]	83,520
Conv2d-8	[-1, 80, 5, 5]	64,880
Conv2d-9	[-1, 73, 5, 5]	52,633
Conv2d-10	[-1, 71, 5, 5]	46,718
Conv2d-11	[-1, 64, 3, 3]	40,960
Linear-12	[-1, 3]	1,731

Total params: 899,320

trained on desktop GPU for 5 hours (using PyTorch)

distance 7 code

Layer (type)	Output Shape	 Param #	
Conv2d-1	[-1, 200, 7, 7]	3,800	
Conv2d-2	[-1, 190, 7, 7]	342,190	
Conv2d-3	[-1, 189, 7, 7]	323,379	
Conv2d-4	[-1, 160, 7, 7]	272,320	
Conv2d-5	[-1, 150, 7, 7]	216,150	
Conv2d-6	[-1, 132, 7, 7]	178,332	
Conv2d-7	[-1, 128, 7, 7]	152,192	
Conv2d-8	[-1, 120, 7, 7]	138,360	
Conv2d-9	[-1, 111, 7, 7]	119,991	
Conv2d-10	[-1, 104, 7, 7]	104,000	
Conv2d-11	[-1, 103, 7, 7]	96,511	
Conv2d-12	[-1, 90, 7, 7]	83,520	
Conv2d-13	[-1, 80, 7, 7]	64,880	
Conv2d-14	[-1, 73, 7, 7]	52,633	
Conv2d-15	[-1, 71, 7, 7]	46,718	
Conv2d-16	[-1, 64, 5, 5]	40,960	
Linear-17	[-1, 3] 	4,803	

Total params: 2,240,739

trained on desktop GPU for 12 hours

Unnecessarily deep?

Conclusions

Deep Q-learning works well for error correction on *toric* code. Can match or even outperform MWPM (for moderate code distance)

But, does require quite deep Q-networks

Periodic boundaries important for our approach.

Future challenges:

- Larger code distances
- Improve reward scheme, use actual success or failure of error correction
- Include syndrome measurement error. (R. Sweke et al, arXiv:1810.07207)
- Surface code with boundaries. (Tougher due to lack of translational invariance)