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Assuming only Pauli-X error on qubits
Syndrome extraction is noiseless
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e (Correction is sensitive to the small change of
syndrome, and involves a lot of parity computation.



Some previous works of
neural decoders

G. Torlai and R. G. Melko, Physical Review Letters (2017).
S. Krastanov and L. Jiang, Scientific Reports 7 (2017)

Repeatedly sample error configurations using RBM / NN

P. Baireuther, T. E. O'Brien, B. Tarasinski, and C. W. J. Beenakker, Quantum
(2018)

Keep track of the Pauli frames in a simulated circuit level noise model




Main result

e |ntroduced a quite reliable way to build neural decoders
for large distance toric code (and likely many other
topological codes)

e Previous works: d~10 —> This work d=64,...

e Source code (and a Google Colab script) can be found at
https://qgithub.com/XiaotongNi/toric-code-neural-decoder
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Motivation

e Same as several previous works

e A convenient way to adapt to experimental noise
models

e Offer a nice combination of speed and accuracy for
topological codes.

e (Go to quite large input size / code distance
e Traditional decoders works for arbitrary size.

e Test versatility of NN / Find ways to overcome
difficulties



Implementation




“Imitation learning”

Fast Decoders for Topological Quantum Codes

Guillaume Duclos-Cianci and David Poulin
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We present a family of algorithms, combining real-space renormalization methods and belief propa-
gation, to estimate the free energy of a topologically ordered system in the presence of defects. Such an
algorithm is needed to preserve the quantum information stored in the ground space of a topologically
ordered system and to decode topological error-correcting codes. For a system of linear size €, our
algorithm runs in time logf compared to £° needed for the minimum-weight perfect matching algorithm
previously used in this context and achieves a higher depolarizing error threshold.
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1. Approximate the
decoder in the paper.

earning”

A Better decoder

2. Further optimization with
(syndrome, correction) pairs

Xo,1 X1,1 X2,1 X3,1 X4,1

Xo,0 X1,0 X2,0 X3,0 Xa,0

X8,4
A A A Xa,3
X8,2
Xs5,1 X6,1 X7,1 Xs8,1

X5,0 X6,0 X7,0 X8,0

Image from Colah's blog
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e Replace detailed syndrome information with educated guess on

the error rates of “coarse-grained qubits”.
e Educated guess done by belief propagation.
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Stack NN together and train

X; Y
® 0 0.1
® ®
° ° ® ®
° ° 0.9
® ® ®
® ®

We can then train all layers
altogether, using (syndrome,
AE AR AB AP AR AR AR A B correction) pairs.




Performance
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With less than 2 hours of training time, we can get similar performance
compared to minimum-weight perfect matching on bit-flip noise.
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About training

Offline training Training with experimental data

Neural decoder > Neural decoder

Any reasonable amount of Limited amount of training data
training data and time (not focused in this work)

Goal: good decoder on noise
model similar to experiments,
or decoders that can utilize
error rate information



optimal decoder for
experiment

parameter space of
neural networks

offline trained model




Adapt to other noise
models

e Small changes in the noise model likely
can be compensated by small changes
in the early layers (need to break the v
translational symmetry in some way) ANRATE A B A B A




Spatially varying error rates

e Proof of principle for a toy noise model
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Roughly speaking: fix parameters of the neural decoder and only train {W,-}

* Increase the logical accuracy from 0.967 to 0.993 after
trained on this noise model (d=16)



General takeaway message



“Imitation learning”

Heuristic algorithm

1. Approximate
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“Imitation learning”

Heuristic algorithm A Better heuristic algorithm
\ / 2. Further optimization
1. Approximate : with data
B - B

X8,4
A AR AR AR AR AR AR A Xer3
X8,2
Xo0,1 X1,1 X2,1 X3,1 X4,1 X5,1 X6,1 X7,1 X8,1

Xo,0 X1,0 X2,0 X3,0 Xa,0 Xs,0 X6,0 X7,0 X8,0



Subroutine 3

Heuristic

algorithm

Subroutine 2
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Better way to utilize knowledge?

Data

O




Better way to utilize knowledge?

Data

Prewous works




