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Toric code

Assuming only Pauli-X error on qubits 
Syndrome extraction is noiseless
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• Correction is sensitive to the small change of 
syndrome, and involves a lot of parity computation.
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Some previous works of 
neural decoders

G. Torlai and R. G. Melko, Physical Review Letters (2017). 

S. Krastanov and L. Jiang, Scientific Reports 7 (2017) 

Repeatedly sample error configurations using RBM / NN


P. Baireuther, T. E. O'Brien, B. Tarasinski, and C. W. J.  Beenakker, Quantum 
(2018) 

Keep track of the Pauli frames in a simulated circuit level noise model  



Main result

• Introduced a quite reliable way to build neural decoders 
for large distance toric code (and likely many other 
topological codes)


• Previous works: d~10 —> This work d=64,…


• Source code (and a Google Colab script) can be found at 
https://github.com/XiaotongNi/toric-code-neural-decoder

https://github.com/XiaotongNi/toric-code-neural-decoder
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Motivation
• Same as several previous works

• A convenient way to adapt to experimental noise 
models

• Offer a nice combination of speed and accuracy for 
topological codes.

• Go to quite large input size / code distance

• Traditional decoders works for arbitrary size.

• Test versatility of NN / Find ways to overcome 
difficulties



Implementation



“Imitation learning”

1. Approximate the 
decoder in the paper.

Image from Colah's blog



“Imitation learning”

1. Approximate the 
decoder in the paper.

2. Further optimization with 
(syndrome, correction) pairs

A Better decoder

Image from Colah's blog
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RG decoder

0.9

0.1

• Replace detailed syndrome information with educated guess on 
the error rates of “coarse-grained qubits”.

• Educated guess done by belief propagation.
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RG decoder

0.9

0.1

• Replace detailed syndrome information with educated guess on 
the error rates of “coarse-grained qubits”.

• Educated guess done by belief propagation.
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Stack NN together and train
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Stack NN together and train

We can then train all layers 
altogether, using (syndrome, 
correction) pairs.

… 0.9

0.1

xi yi

BP NN BP NN



Performance

With less than 2 hours of training time, we can get similar performance 
compared to minimum-weight perfect matching on bit-flip noise.

5

Figure 5: In this figure, we compare the performance of
our neural decoder to the MWPM algorithm. The solid
line for d = 16 and the dashed line for d = 64 decoder
are using the strict training policy, while more training
has been done on the d = 64 decoder corresponding to
the solid line. The “star” points are the performance of
the minimum-weight perfect matching algorithm. The

colors of stars indicate the code distance they are
evaluated on. The vertical grid indicates the physical
error rates for which we evaluate the logical accuracy
for the lines. We see the performance of neural decoder
can be almost as good as MWPM for a decent range of

physical error rates.

decoder in [3], where the authors have shown a threshold
of 8.2% when using 2 ⇥ 1 unit cell, and claim a thresh-
old around 9.0% if using 2⇥ 2 unit cell. With the strict
training policy, our neural decoder is slight better or at
least comparable to the RG decoder, while without the
policy our neural decoder is clearly better for d  64.

V. DISCUSSION

One obvious question is whether we can get a good
neural decoder for surface code or other topological codes

on large lattices. In the case of surface code, the major
di↵erence compared to the toric code is the existence
of boundaries. This means we have to inject some non-
translational invariant components into the network. For
example, we can have a constant tensor B with shape
(L,L, 2) marks the boundary, e.g. B(x, y, i) = 1 if (x, y)
is at the smooth boundary and i = 0, or if (x, y) is at the
rough boundary and i = 1; otherwise B(x, y, i) = 0. We
then stack B with the old input tensor before feed into
the neural decoder. More generally, if a renormalization
group decoder exists for a topological code, we antici-
pate that a neural decoder can be trained to have simi-
lar or better performance. For example, neural decoders
for surface code with measurement errors, for topological
codes with abelian anyons can be trained following the
same procedure describe in this paper.
We want to discuss a bit more about running neural

networks on specialized chips. It is straightforward to
run our neural decoder on GPU or TPU [18] as they are
supported by Tensorflow [19], the neural network library
used in this work. There is software (e.g. OpenVINO) to
compile common neural networks to run on commercially
available field-programmable gate arrays (FPGAs), but
we do not know how easy it is for our neural decoder3.
Apart from power e�ciency, there is study about oper-
ating FPGAs at 4K temperature [20]. Overall, there is
a possibility to run neural decoders in low temperature.
Note that for running on FPGAs or benchmarking the
speed, it is likely a good idea to first compress the neural
networks, see [21].
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About training

Offline training

Neural decoder

Any reasonable amount of 
training data and time

Neural decoder

Training with experimental data

Limited amount of training data 
(not focused in this work)

Goal: good decoder on noise 
model similar to experiments, 
or decoders that can utilize 
error rate information



offline trained model

parameter space of 
neural networks

optimal decoder for 
experiment



Adapt to other noise 
models

• Small changes in the noise model likely 
can be compensated by small changes 
in the early layers (need to break the 
translational symmetry in some way)



Spatially varying error rates

• Proof of principle for a toy noise model

noisy 
error rate=0.16 noiseless
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How it is done

… 0.9

0.1

BP NN BP NN

…

…w1 w2

w3

w4

Roughly speaking: fix parameters of the neural decoder and only train {wi}

• Increase the logical accuracy from 0.967 to 0.993 after 
trained on this noise model (d=16)



General takeaway message



“Imitation learning”

1. Approximate

Heuristic algorithm



“Imitation learning”

1. Approximate
2. Further optimization 
with data

A Better heuristic algorithmHeuristic algorithm



Heuristic 
algorithm

Subroutine 1 Subroutine 2

Subroutine 3







Lazy way of injecting our knowledge about the 
problem to the machine learning model



Better way to utilize knowledge?

Model

Data



Better way to utilize knowledge?

Model

Data

Physical law

Previous works


