Discovering physical concepts with neural networks

Renato Renner ETH Zurich

joint work with ...

Raban Iten

Tony Metger

Henrik Wilming Lídia del Rio

preprint: arXiv:1807.10300

Computer as "subject" that uses quantum theory

Computer as "object" that is studied by quantum theory.

Background: Agency as a relative notion

Background: Agency as a relative notion

[Frauchiger and RR, Nat. Comm. 2018]: There exist scenarios where a fully quantum-mechanical treatment of the agents leads them to issue contradictory statements.

Background: The trouble

Standard quantum theory cannot in general consistently describe agents, i.e., users of quantum theory.

New Scientist

WEEKLY 23 March 2019

GAIA REBORN

The idea of Earth as one organism is back

OH MY COD!

Do you know what fish you're eating?

THE HUMAN COMPASS

How our brains detect magnetic fields

QUANTUM THEORY IS IN TROUBLE

And it looks like the problem is you

Why was the problem not noticed before?

Standard situation: agents subject to dissipation

Problematic situation: systems protected from dissipation

Long-term program

Question: How would the world be described by agents if dissipation was much slower?

Long-term program

Question: Can we build agents that discover physical laws?

Question: If yes, how can we extract these laws?

Short-term program

Question: Can we make an agent learn "physical laws" in a toy example, so that they can be extracted?

What is a physical law?

Asking questions

SciNet

Example 1: Damped pendulum

Physical model: $-\kappa x - b\dot{x} = m\ddot{x}$

"Law" defined by: κ, b

Observation: $\{x(t)\}_t$

Question: x(t') for time t'

Example 1: Damped pendulum

Latent representation

Latent neuron 1

Latent neuron 2

answer

decoder D

question Q

observation

Latent neuron 3

Example 2: Tomography of qubits

Physical model: $P(x|\psi) = |\langle \phi_x | \psi \rangle|^2$

"Law" defined by: $|\psi\rangle$

Observation: $\{P(x|\psi)\}_x$

Question: $P(x'|\psi)$ for measurement x'

Latent representation

Other examples

Angular momentum conservation

Copernicus

Summary

Long-term goal: Develop a variant of quantum theory that can consistently describe agents who are using the theory.

First step: SciNet, a network architecture that enables the extraction of the learned laws. (So far only tested for toy examples.)

Thank you for your attention

For more details, see

R. Iten, T. Metger, Henrik Wilming, Lidia del Rio, and RR "Discovering physical concepts with neural networks" arXiv:1807.10300

