# virtual FNS/2021

# January 11-15

#### **Committee**



# Resonant time-symmetry breaking in coupled oscillator

# Mark Dykman

Department of Physics and Astronomy, Michigan State University

#### In collaboration with

C. Bruder, Basel University

N. Lörch, Basel University

Y. Zhang, Yale University





# Parametric oscillator: time-symmetry breaking

Oscillator with a periodically modulated frequency:  $m\ddot{q} + 2\Gamma m\dot{q} + m(\omega_0^2 + F\cos\omega_F t)q + \gamma q^3 = 0$ 

Period doubling: the period of each state is  $4\pi$  /  $\omega_F$ . The states differ in phase by  $\pi$  -

#### broken discrete time-translation symmetry



squatting,  $\omega_0 = \sqrt{g/l}$  ; two squats per period = period doubling





#### Breaking time-translation symmetry.

Quantum Time Crystals F. Wilczek, PRL 109, 160401 (2012)

**Absence of Quantum Time Crystals** H. Watanabe and M. Oshikawa, PRL **114**, 251603 (2015)

#### Many-body localized states:

#### **Phase Structure of Driven Quantum Systems**

V. Khemani, ... S. L. Sondhi, PRL **116**, 250401 (2016)

#### **Floquet Time Crystals**

D. Else, B. Bauer, & C. Nayak, PRL **117**, 090402 (2016)

#### **Observation of a Discrete Time Crystal**

J. Zhang... C. Monroe, Nature (2017)

#### Observation of discrete time-crystalline order...

S. Choi... M. Lukin, Nature (2017)



0.08



Time (T)

#### **Open questions:**

- What is the role of many-body effects?
- > Coherent vs dissipative
- Is many-body localization necessary?
- Heating and "prethermalization"
- **>** ...
- Well-characterized systems can help

Weakly damped vibrational modes are advantageous: the driving can be resonant and thus weak

# Unbroken symmetry in a magnetooptical trap

Oscillating cold-atom ( $^{85}$ Rb,  $400 \,\mu$ K) clouds in a periodically modulated trap (Kim et al, 2006; Heo et al. 2010)





 $N_{tot} < N_c \Rightarrow$  equally populated clouds



# Many-body symmetry breaking in a magnetooptical trap

Oscillating cold-atom (85Rb,  $400 \mu$ K) clouds in a periodically modulated trap (Kim et al, 2006; Heo et al. 2010)





 $N_{tot} < N_c \Rightarrow$  equally populated clouds

#### Ising transition for all-to-all coupling

All critical exponents in full agreement with the mean-field theory



# **Coherent quantum dynamics of coupled oscillators**

Full Hamiltonian: 
$$H(t) = \sum_{n} H_{n}(t) - \frac{1}{2} \sum_{m}' \epsilon_{nm} q_{n} q_{m}$$

$$H_n(t) = \frac{1}{2}p_n^2 + \frac{1}{2}(\omega_0^2 + F\cos\omega_F t) q_n^2 + \frac{1}{4}\gamma q_n^4$$

Solid-state physics picture: modulated narrow-band optical phonons



1D, 2D, not necessarily nearest-neighbor coupling



# **Coherent quantum dynamics of coupled oscillators**

Full Hamiltonian: 
$$H(t) = \sum_{n} H_{n}(t) - \frac{1}{2} \sum_{mn}' \epsilon_{nm} q_{n} q_{m}$$

$$H_n(t) = \frac{1}{2}p_n^2 + \frac{1}{2}(\omega_0^2 + F\cos\omega_F t)q_n^2 + \frac{1}{4}\gamma q_n^4$$

Rotating frame, frequency  $\omega_F/2$  ( $\omega_F \approx 2\omega_0$ ): switch to **quadratures** 

$$q_n = C[-Q_n \sin(\omega_F t/2) + P_n \cos(\omega_F t/2)]$$

$$p_n = -\frac{m\omega_F}{2} C[Q_n \cos(\omega_F t/2) + P_n \sin(\omega_F t/2)]$$

$$[Q_n, P_n] = i\hbar' \propto \hbar$$

1D, 2D, not necessarily nearest-neighbor coupling



Rotating wave approximation ⇒ time-independent Hamiltonian in terms of the quadratures

$$H(t) \Rightarrow G$$
,  $G = \sum_{n} g_n (Q_n, P_n) - \frac{1}{2} \sum_{m \neq n} V_{nm} (Q_n Q_m + P_n P_m)$ ,  $V_{nm} \propto \epsilon_{nm}$ 

$$g(Q,P) = \frac{1}{4}(Q^2 + P^2)^2 + \frac{1}{2}(1 - \mu)P^2 - \frac{1}{2}(1 + \mu)Q^2, \qquad \mu = \frac{\omega_F(\omega_F - 2\omega_0)}{|F|} \propto \frac{\text{small detuning}}{\text{small drive}}$$

# Single-oscillator picture

$$g(Q,P) = \frac{1}{4}(Q^2 + P^2)^2 + \frac{1}{2}(1-\mu)P^2 - \frac{1}{2}(1+\mu)Q^2,$$

$$\mu = \omega_F(\omega_F - 2\omega_0)/|F|$$

#### **Evolution of the "Floquet" Hamiltonian with the varying scaled frequency detuning:**





no vibrations,  $\mu < -1$ 



Effective "potential"











# **Coherent regime: quantum phase transition**

The many-body RWA Hamiltonian  $G = \sum_n g(Q_n, P_n) - \frac{1}{2} \sum_{mn}' V_{mn} (Q_m Q_n + P_m P_n)$ 

Resonators form a periodic system, "ferromagnetic" coupling

Extremum of 
$$G: Q_n = 0, \mu < \mu_{QPT}$$
, and  $Q_n = \pm \bar{Q}, \ \bar{Q} = \left(\mu - \mu_{QPT}\right)^{1/2}, \mu > \mu_{QPT} \ (P_n = 0)$ 



### Excitation spectra



The gap above QPT ( $\mu < \mu_{QPT}$ )

$$[(\mu_{OPT} - \mu + 2)(\mu_{OPT} - \mu)]^{1/2}$$



At QPT  $\omega(k) \propto k, k \rightarrow 0$ 



The gap below QPT  $(\mu > \mu_{QPT})$  is

$$2|\bar{Q}| \equiv 2(\mu - \mu_{OPT})^{1/2}$$

$$\mu_{QPT} = -1 + \sum_{\mathbf{n}} V_{\mathbf{nm}}, \qquad \mu = \omega_F (\omega_F - 2\omega_0)/|F|$$

A similar, but topologically nontrivial transition, for a resonantly modulated spin chain (MD, PRA 2019)

The **full** many-body Hamiltonian  $G = \sum_n g(Q_n, P_n) - \frac{1}{2} \sum_{mn}' V_{mn} (Q_m Q_n + P_m P_n) + (\hat{g}_{\text{ctr-rot}} e^{2i\omega_F t} + \text{c. c.})$ 

Absorption: from counter-rotating terms. Requires resonance:  $n\omega(k) = 2\omega_F \Rightarrow n \gg 1 \Rightarrow$  exponentially small overlap integral away from the critical point.

No MBL is required for the time crystal, no high-frequency limit is required to prevent heating.

# $\omega(\mathsf{k})$

The gap above QPT ( $\mu < \mu_{QPT}$ )

$$[(\mu_{QPT} - \mu + 2)(\mu_{QPT} - \mu)]^{1/2}$$

#### **Excitation spectra**



At QPT 
$$\omega(k) \propto k, k \rightarrow 0$$



The gap below QPT  $(\mu > \mu_{QPT})$  is

$$2|\bar{Q}| \equiv 2(\mu - \mu_{OPT})^{1/2}$$

$$\mu_{QPT} = -1 + \sum_{\mathbf{n}} V_{\mathbf{nm}}, \qquad \mu = \omega_F (\omega_F - 2\omega_0)/|F|$$

# **Dissipative dynamics**

Dissipation⇒ classical- and quantum-noise-induced "over-barrier" switching between the period-two states,

$$W_{\sigma}^{(n)} = C \exp(-R_{\sigma}^{(n)}/\tilde{\hbar})$$

 $\widetilde{\hbar}$  -"quantum temperature", for  $k_BT > \hbar\omega_0$ ,  $\widetilde{\hbar} \to k_BT$ ;

cf. 
$$W \propto \exp(-\Delta U/k_B T)$$





Uncoupled oscillators:  $W_1^{(n)} = W_{-1}^{(n)}$ . Each oscillator vibrates at the same frequency  $\omega_F/2$ , The phases, i.e., the occupied minima of  $g_n$ , are uncorrelated. No symmetry breaking in a large system

Experiment on classical switching: L. Lapidus, D. Enzer, and G. Gabrielse, PRL (1999)

# Coupling-induced change of the switching rates

**Coupled** oscillators m and n: If oscillator m is in state  $\sigma$ , the time-translation symmetry for oscillator n is broken

"weak tilt". The change of the switching "activation barrier" is linear in the coupling

$$W_{\sigma}^{(n)} = C \exp\left(-R_{\sigma}^{(n)}/\tilde{\hbar}\right), \qquad R_{\sigma}^{(n)} = \overline{R^{(n)}} + \delta R_{\sigma}^{(n)}$$
 
$$\delta R_{\sigma}^{(n)} = \sigma_n \sum_{m \neq n} \sigma_m J_{nm}$$



The sign of  $\delta R_{\sigma}^{(n)}$  is opposite in opposite wells; the equilibrium position  $\sigma_m$  has opposite signs in opposite wells

Symmetry lifting by an extra drive at  $\omega_F/2$ , classical: D. Ryvkine and MD, PRE (2006); observed: I. Mahboob et al., APL (2010); numerical work on coupled quantum oscillators: H. Goto, J. Phys. Soc. Japan (2019), N. Lörch et al., PRR (2019) and refs. therein.

## Coupling-induced change of the switching rates

**Coupled** oscillators m and n: If oscillator m is in state  $\sigma$ , the time-translation symmetry for oscillator n is broken

$$W_{\sigma}^{(n)} = C \exp\left(-R_{\sigma}^{(n)}/\tilde{h}\right), \qquad R_{\sigma}^{(n)} = \overline{R^{(n)}} + \delta R_{\sigma}^{(n)}$$
 
$$\delta R_{\sigma}^{(n)} = \sigma_n \sum_{m \neq n} \sigma_m J_{nm}$$



Mapping on the system of coupled spins:  $W_{\sigma}^{(n)} = \overline{W^{(n)}} \exp[-\sigma_n \sum_m J_{nm} \sigma_m / \widetilde{\hbar}]$ 

Ising system, except that  $J_{nm} \neq J_{mn}$  if nanoresonators are not identical!

 $J_{nm}$  is **not** the coupling energy! Calculating it is fun



# Weak coupling: order and time frustration

"ferromagnetic" coupling  $J_{nm} > 0 \Rightarrow$  same phase state

"antiferromagnetic":  $J_{nm} < 0 \Rightarrow$  possible frustration





If the coupling is attractive, oscillators vibrate with the same phase

# "Effectively strong" coupling: metastable many-body states

Quantum dynamics near the bifurcation point  $\mu=\mu_B$  where period-two vibrations emerge

$$\frac{d\tilde{Q}_n}{dt} = -\frac{\partial U}{\partial \tilde{Q}_n} + \sum_m V_{nm} \, \tilde{Q}_m + quantum \, noise$$
,

$$U(\tilde{Q}) = -\frac{1}{2}\tilde{Q}^2 + \frac{1}{4}\tilde{Q}^4, \quad V_{nm} \propto |\mu - \mu_B|^{-1}$$





$$E = \sum_{n} U(\tilde{Q}_{n}) - \frac{1}{2} \sum_{m \neq n} V_{nm} \tilde{Q}_{n} \tilde{Q}_{m}$$

Quantum-noise induced diffusion of coupled particles in a potential landscape



- Interaction of quantum parametric oscillators leads to breaking of the discrete time-translation symmetry, the "time-crystal" effect.
- In the quantum coherent regime, time-symmetry breaking maps onto a far-from-equilibrium quantum phase transition. Heating is exponentially slow away from the QPT.
- > The QPT leads to a topologically nontrivial phase for a parametrically modulated spin/qubit chain
- > The system of coupled dissipative oscillators maps onto the Ising system with controlled connectivity. The system has a nontrivial "non-Hamiltonian" disorder and broken time symmetry







Quantum mechanics of periodically driven systems.

The Schrödinger equation: 
$$i\hbar\dot{\psi}=H(t)\psi, \quad H(t)=H(t+\tau_F), \quad \tau_F=2\pi/\omega_F$$

No stationary eigenstates in a driven system. But there is time-translation symmetry

Floquet (quasienergy) states 
$$\psi_{\varepsilon}(t + \tau_F) = \exp(-i\varepsilon\tau_F/\hbar)\psi_{\varepsilon}(t)$$

Expectation value of an observable: 
$$\langle L(t) \rangle = \langle \psi(t) | L | \psi(t) \rangle$$
. For a Floquet state  $\langle L(t+\tau_F) \rangle = \langle L(t) \rangle$ 

Superposition: 
$$\psi(t) = A_1 \psi_{\varepsilon_1}(t) + A_2 \psi_{\varepsilon_2}(t) \Rightarrow$$

$$\langle L(t+\tau_F)\rangle = |A_1|^2 \langle \psi_{\varepsilon_1}(t)|L|\psi_{\varepsilon_1}(t)\rangle + |A_2|^2 \langle \psi_{\varepsilon_2}(t)|L|\psi_{\varepsilon_2}(t)\rangle$$

+
$$\left[A_1^*A_2\langle\psi_{\varepsilon_1}(t)|L|\psi_{\varepsilon_2}(t)\rangle\exp\left[\frac{\mathrm{i}(\varepsilon_1-\varepsilon_2)\tau_F}{\hbar}\right]$$
+ c. c. ]

If  $(\varepsilon_1 - \varepsilon_2)\tau_F/\hbar = \pi$  then  $\langle L(t+2\tau_F)\rangle = \langle L(t)\rangle$   $\Rightarrow$  period doubling in the supersposition of states

Bloch theorem: 
$$\psi_k(r+R) = \exp(ikR)\psi_k(r)$$
;