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Parametric oscillator: time-symmetry breaking

Oscillator with a periodically modulated frequency:

Period doubling: the period of each state is 4𝜋𝜋 ∕ 𝜔𝜔𝐹𝐹. The states differ in phase by 𝜋𝜋 -

broken discrete time-translation symmetry

squatting, 𝜔𝜔0 = ⁄𝑔𝑔 𝑙𝑙 ; two squats per period = period doubling

𝑚𝑚𝑞̈𝑞 + 2Γ𝑚𝑚𝑞̇𝑞 + 𝑚𝑚(𝜔𝜔02 + 𝐹𝐹 cos𝜔𝜔𝐹𝐹𝑡𝑡) 𝑞𝑞 + 𝛾𝛾𝑞𝑞3 = 0



New life: Time Crystals
Breaking time-translation symmetry.

Many-body localized states:

Quantum Time Crystals   F. Wilczek, PRL  109, 160401 (2012)

Absence of  Quantum Time Crystals   H. Watanabe and M. Oshikawa, PRL  114, 251603  (2015)

Phase Structure of Driven Quantum Systems

V. Khemani, … S. L. Sondhi, PRL  116, 250401 (2016)

Observation of a Discrete Time Crystal

J. Zhang… C. Monroe, Nature (2017)

Floquet Time Crystals

D. Else, B. Bauer, & C. Nayak, PRL  117, 090402 (2016)

Observation of discrete time-crystalline order…

S. Choi… M. Lukin, Nature (2017)



Open questions:

 What is the role of many-body effects?

 Coherent vs dissipative 

 Is many-body localization necessary?

 Heating and “prethermalization”

 …

 Well-characterized systems can help

Weakly damped vibrational modes are advantageous: 

the driving can be resonant and thus weak 



Unbroken symmetry in a magnetooptical trap

𝑵𝑵𝒕𝒕𝒕𝒕𝒕𝒕 < 𝑵𝑵𝒄𝒄 ⇒ equally populated clouds

Oscillating cold-atom (85Rb, 400 𝜇𝜇K) clouds in a periodically modulated trap (Kim et al, 2006; Heo et al. 2010)  



Many-body symmetry breaking in a magnetooptical trap

𝑵𝑵𝒕𝒕𝒕𝒕𝒕𝒕 < 𝑵𝑵𝒄𝒄 ⇒ equally populated clouds

Oscillating cold-atom (85Rb, 400 𝜇𝜇K) clouds in a periodically modulated trap (Kim et al, 2006; Heo et al. 2010)  

Ising transition for all-to-all coupling

broken symmetry, 
period-two state

All critical exponents in full agreement with the mean-field theory

||η|𝑵𝑵𝟏𝟏 − 𝑵𝑵𝟐𝟐|

𝑵𝑵𝒕𝒕𝒕𝒕𝒕𝒕 − 𝑵𝑵𝒄𝒄

equally populated 
clouds, no 
symmetry breaking



Coherent quantum dynamics of coupled oscillators

𝐻𝐻𝑛𝑛 𝑡𝑡 =
1
2
𝑝𝑝𝑛𝑛2 +

1
2

(𝜔𝜔02+𝐹𝐹 cos𝜔𝜔𝐹𝐹𝑡𝑡) 𝑞𝑞𝑛𝑛2 +
1
4
𝛾𝛾𝑞𝑞𝑛𝑛4

Full Hamiltonian: 𝐻𝐻(𝑡𝑡) = ∑𝑛𝑛𝐻𝐻𝑛𝑛 𝑡𝑡 − 1
2
∑𝑚𝑚𝑚𝑚
′ 𝜖𝜖𝑛𝑛𝑛𝑛𝑞𝑞𝑛𝑛𝑞𝑞𝑚𝑚 1D, 2D, not necessarily 

nearest-neighbor coupling

Solid-state physics picture: modulated narrow-band  optical phonons



Coherent quantum dynamics of coupled oscillators

𝐻𝐻𝑛𝑛 𝑡𝑡 =
1
2
𝑝𝑝𝑛𝑛2 +

1
2

(𝜔𝜔02+𝐹𝐹 cos𝜔𝜔𝐹𝐹𝑡𝑡) 𝑞𝑞𝑛𝑛2 +
1
4
𝛾𝛾𝑞𝑞𝑛𝑛4

Rotating wave approximation ⇒ time-independent  Hamiltonian in terms of the quadratures

𝐻𝐻 𝑡𝑡 ⇒ 𝐺𝐺, G = �
𝑛𝑛

𝑔𝑔𝑛𝑛 𝑄𝑄𝑛𝑛 ,𝑃𝑃𝑛𝑛 −
1
2
�
𝑚𝑚≠𝑛𝑛

𝑉𝑉𝑛𝑛𝑛𝑛 𝑄𝑄𝑛𝑛𝑄𝑄𝑚𝑚 + 𝑃𝑃𝑛𝑛𝑃𝑃𝑚𝑚 , 𝑉𝑉𝑛𝑛𝑛𝑛 ∝ 𝜖𝜖𝑛𝑛𝑛𝑛

Full Hamiltonian: 𝐻𝐻(𝑡𝑡) = ∑𝑛𝑛𝐻𝐻𝑛𝑛 𝑡𝑡 − 1
2
∑𝑚𝑚𝑚𝑚
′ 𝜖𝜖𝑛𝑛𝑛𝑛𝑞𝑞𝑛𝑛𝑞𝑞𝑚𝑚 1D, 2D, not necessarily 

nearest-neighbor coupling

Rotating frame, frequency ⁄𝜔𝜔𝐹𝐹 2 𝜔𝜔𝐹𝐹 ≈ 2𝜔𝜔0 : switch to quadratures

𝑞𝑞𝑛𝑛 = 𝐶𝐶[−𝑄𝑄𝑛𝑛sin ⁄(𝜔𝜔𝐹𝐹𝑡𝑡 2) + 𝑃𝑃𝑛𝑛 cos( ⁄𝜔𝜔𝐹𝐹𝑡𝑡 2)]

𝑝𝑝𝑛𝑛 = −
𝑚𝑚𝜔𝜔𝐹𝐹

2 𝐶𝐶[𝑄𝑄𝑛𝑛 cos ⁄𝜔𝜔𝐹𝐹𝑡𝑡 2 + 𝑃𝑃𝑛𝑛 sin( ⁄𝜔𝜔𝐹𝐹𝑡𝑡 2)]

𝑄𝑄𝑛𝑛,𝑃𝑃𝑛𝑛 = 𝑖𝑖ℏ′ ∝ ℏ

𝑔𝑔 𝑄𝑄,𝑃𝑃 =
1
4
𝑄𝑄2 + 𝑃𝑃2 2 +

1
2

1 − 𝜇𝜇 𝑃𝑃2 −
1
2

1 + 𝜇𝜇 𝑄𝑄2, 𝜇𝜇 =
𝜔𝜔𝐹𝐹 𝜔𝜔𝐹𝐹 − 2𝜔𝜔0

𝐹𝐹
∝

small detuning
small drive



Single-oscillator picture

𝑔𝑔 𝑄𝑄,𝑃𝑃 =
1
4
𝑄𝑄2 + 𝑃𝑃2 2 +

1
2

1 − 𝜇𝜇 𝑃𝑃2 −
1
2

1 + 𝜇𝜇 𝑄𝑄2, 𝜇𝜇 = 𝜔𝜔𝐹𝐹(𝜔𝜔𝐹𝐹 − 2𝜔𝜔0)/|𝐹𝐹|

Evolution of the “Floquet” Hamiltonian with the varying scaled frequency detuning:

Effective “potential”

no vibrations, 𝜇𝜇 < −1 criticality, 𝜇𝜇𝑐𝑐𝑐𝑐 = −1 bistability, 𝜇𝜇 > −1



Coherent regime: quantum phase transition 

The many-body RWA Hamiltonian 𝐺𝐺 = ∑𝑛𝑛 𝑔𝑔 𝑄𝑄𝑛𝑛,𝑃𝑃𝑛𝑛 − 1
2
∑𝑚𝑚𝑚𝑚
′ 𝑉𝑉𝑚𝑚𝑚𝑚(𝑄𝑄𝑚𝑚𝑄𝑄𝑛𝑛 + 𝑃𝑃𝑚𝑚𝑃𝑃𝑛𝑛)

Resonators form a periodic system, “ferromagnetic” coupling

Excitation spectra

The gap above QPT (𝜇𝜇 < 𝜇𝜇𝑄𝑄𝑄𝑄𝑄𝑄)

𝜇𝜇𝑄𝑄𝑄𝑄𝑄𝑄 − 𝜇𝜇 + 2 𝜇𝜇𝑄𝑄𝑄𝑄𝑄𝑄 − 𝜇𝜇
⁄1 2

At QPT 𝜔𝜔 𝑘𝑘 ∝ 𝑘𝑘,𝑘𝑘 → 0 The gap below QPT (𝜇𝜇 > 𝜇𝜇𝑄𝑄𝑄𝑄𝑄𝑄) is

2 �𝑄𝑄 ≡ 2 𝜇𝜇 − 𝜇𝜇𝑄𝑄𝑄𝑄𝑄𝑄
1∕2

Extremum of 𝐺𝐺: 𝑄𝑄𝑛𝑛 = 0,𝜇𝜇 < 𝜇𝜇𝑄𝑄𝑄𝑄𝑄𝑄, and 𝑄𝑄𝑛𝑛 = ± �𝑄𝑄, �𝑄𝑄 = 𝜇𝜇 − 𝜇𝜇𝑄𝑄𝑄𝑄𝑄𝑄
1∕2,𝜇𝜇 > 𝜇𝜇𝑄𝑄𝑄𝑄𝑄𝑄 (𝑃𝑃𝑛𝑛 = 0)

𝜇𝜇𝑄𝑄𝑄𝑄𝑄𝑄 = −1 + �
𝐧𝐧

𝑉𝑉𝐧𝐧𝐧𝐧, 𝜇𝜇 = 𝜔𝜔𝐹𝐹(𝜔𝜔𝐹𝐹 − 2𝜔𝜔0)/|𝐹𝐹|

A similar, but topologically nontrivial transition, for a resonantly modulated spin chain (MD, PRA 2019)



Heating

The full many-body Hamiltonian 𝐺𝐺 = ∑𝑛𝑛 𝑔𝑔 𝑄𝑄𝑛𝑛,𝑃𝑃𝑛𝑛 − 1
2
∑𝑚𝑚𝑚𝑚
′ 𝑉𝑉𝑚𝑚𝑚𝑚 𝑄𝑄𝑚𝑚𝑄𝑄𝑛𝑛 + 𝑃𝑃𝑚𝑚𝑃𝑃𝑛𝑛 + ( �𝑔𝑔ctr−rote2i𝜔𝜔𝐹𝐹𝑡𝑡 + c. c. )

Absorption: from counter-rotating terms. Requires resonance: 𝑛𝑛𝑛𝑛 𝑘𝑘 = 2𝜔𝜔𝐹𝐹 ⇒ 𝑛𝑛 ≫ 1 ⇒ exponentially small 

overlap integral away from the critical point. 

No MBL is required for the time crystal, no high-frequency limit is required to prevent heating. 

Excitation spectra

The gap above QPT (𝜇𝜇 < 𝜇𝜇𝑄𝑄𝑄𝑄𝑄𝑄)

𝜇𝜇𝑄𝑄𝑄𝑄𝑄𝑄 − 𝜇𝜇 + 2 𝜇𝜇𝑄𝑄𝑄𝑄𝑄𝑄 − 𝜇𝜇
⁄1 2

At QPT 𝜔𝜔 𝑘𝑘 ∝ 𝑘𝑘,𝑘𝑘 → 0 The gap below QPT (𝜇𝜇 > 𝜇𝜇𝑄𝑄𝑄𝑄𝑄𝑄) is

2 �𝑄𝑄 ≡ 2 𝜇𝜇 − 𝜇𝜇𝑄𝑄𝑄𝑄𝑄𝑄
1∕2

𝜇𝜇𝑄𝑄𝑄𝑄𝑄𝑄 = −1 + �
𝐧𝐧

𝑉𝑉𝐧𝐧𝐧𝐧, 𝜇𝜇 = 𝜔𝜔𝐹𝐹(𝜔𝜔𝐹𝐹 − 2𝜔𝜔0)/|𝐹𝐹|



Dissipative dynamics

Dissipation⇒ classical- and quantum-noise-induced “over-barrier” switching between 

the period-two states, 

𝑊𝑊𝜎𝜎
(𝑛𝑛) = 𝐶𝐶 exp(− ⁄𝑅𝑅𝜎𝜎

(𝑛𝑛) �ℏ)

�ℏ −“quantum temperature”, for 𝑘𝑘𝐵𝐵𝑇𝑇 > ℏ𝜔𝜔0, �ℏ → 𝑘𝑘𝐵𝐵𝑇𝑇; 

cf. 𝑊𝑊 ∝ exp(− ⁄Δ𝑈𝑈 𝑘𝑘𝐵𝐵𝑇𝑇)

Uncoupled oscillators: 𝑊𝑊1
(𝑛𝑛) = 𝑊𝑊−1

(𝑛𝑛). Each oscillator 

vibrates at the same frequency ⁄𝜔𝜔𝐹𝐹 2, The phases, i.e., 

the occupied minima of 𝑔𝑔𝑛𝑛, are uncorrelated. No 

symmetry breaking in a large systerm

𝜎𝜎 = 1𝜎𝜎 = −1

Experiment on classical switching: L. Lapidus, D. Enzer, and G. Gabrielse, PRL (1999)



Coupling-induced change of the switching rates

mth oscillatornth oscillator

“weak tilt”. The change of the switching “activation 

barrier” is linear in the coupling

𝑊𝑊𝜎𝜎
(𝑛𝑛) = 𝐶𝐶 exp − ⁄𝑅𝑅𝜎𝜎

𝑛𝑛 �ℏ , 𝑅𝑅𝜎𝜎
(𝑛𝑛) = 𝑅𝑅 𝑛𝑛 + 𝛿𝛿𝑅𝑅𝜎𝜎

(𝑛𝑛)

𝛿𝛿𝑅𝑅𝜎𝜎
(𝑛𝑛) = 𝜎𝜎𝑛𝑛 �

𝑚𝑚≠𝑛𝑛
𝜎𝜎𝑚𝑚𝐽𝐽𝑛𝑛𝑛𝑛

Coupled oscillators m and n: If oscillator m is in state 𝜎𝜎, 

the time-translation symmetry for oscillator n  is broken

The sign of 𝛿𝛿𝑅𝑅𝜎𝜎
(𝑛𝑛) is opposite in opposite wells; the equilibrium position 𝜎𝜎𝑚𝑚 has opposite signs in opposite wells 

Symmetry lifting by an extra drive at ⁄𝜔𝜔𝐹𝐹 2 , classical: D. Ryvkine and MD, PRE (2006); observed: I. Mahboob et al., APL (2010); 

numerical work on coupled quantum oscillators: H. Goto, J. Phys. Soc. Japan (2019), N. Lörch et al., PRR (2019) and refs. therein. 



Coupling-induced change of the switching rates

mth oscillatornth oscillator

Coupled oscillators m and n: If oscillator m is in state 𝜎𝜎, 

the time-translation symmetry for oscillator n  is broken

Mapping on the system of coupled spins: 𝑊𝑊𝜎𝜎
(𝑛𝑛) = 𝑊𝑊 𝑛𝑛 exp[−𝜎𝜎𝑛𝑛 ∑𝑚𝑚 ⁄𝐽𝐽𝑛𝑛𝑛𝑛𝜎𝜎𝑚𝑚 �ℏ]

Ising system, except that 𝐽𝐽𝑛𝑛𝑛𝑛 ≠ 𝐽𝐽𝑚𝑚𝑚𝑚 if nanoresonators are not identical!

𝐽𝐽𝑛𝑛𝑛𝑛 is not the coupling energy!  Calculating it is fun

𝑊𝑊𝜎𝜎
(𝑛𝑛) = 𝐶𝐶 exp − ⁄𝑅𝑅𝜎𝜎

𝑛𝑛 �ℏ , 𝑅𝑅𝜎𝜎
(𝑛𝑛) = 𝑅𝑅 𝑛𝑛 + 𝛿𝛿𝑅𝑅𝜎𝜎

(𝑛𝑛)

𝛿𝛿𝑅𝑅𝜎𝜎
(𝑛𝑛) = 𝜎𝜎𝑛𝑛 �

𝑚𝑚≠𝑛𝑛
𝜎𝜎𝑚𝑚𝐽𝐽𝑛𝑛𝑛𝑛



Weak coupling: order and time frustration

“ferromagnetic” coupling 𝐽𝐽𝑛𝑛𝑛𝑛 > 0 ⇒ same phase state “antiferromagnetic”: 𝐽𝐽𝑛𝑛𝑛𝑛 < 0 ⇒ possible frustration

If the coupling is attractive, oscillators vibrate with the same phase



„Effectively strong“ coupling: metastable many-body states

Very close to the bifurcation point the coupling becomes strong – multiple global minima 

of the effective energy, no matching on a spin system

𝐸𝐸 = ∑𝑛𝑛𝑈𝑈 �𝑄𝑄𝑛𝑛 − 1
2
∑𝑚𝑚≠𝑛𝑛 𝑉𝑉𝑛𝑛𝑛𝑛 �𝑄𝑄𝑛𝑛 �𝑄𝑄𝑚𝑚

Quantum-noise induced diffusion of coupled particles in a potential landscape

Quantum dynamics near the bifurcation point 𝜇𝜇 = 𝜇𝜇𝐵𝐵 where period-two 

vibrations emerge
𝑑𝑑 �𝑄𝑄𝑛𝑛
𝑑𝑑𝑑𝑑

= −
𝜕𝜕𝜕𝜕
𝜕𝜕 �𝑄𝑄𝑛𝑛

+ �
𝑚𝑚

𝑉𝑉𝑛𝑛𝑛𝑛 �𝑄𝑄𝑚𝑚 + 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ,

𝑈𝑈 �𝑄𝑄 = −1
2
�𝑄𝑄2 + 1

4
�𝑄𝑄4,   𝑉𝑉𝑛𝑛𝑛𝑛 ∝ 𝜇𝜇 − 𝜇𝜇𝐵𝐵 −1

⇒ simple explicit form of 𝐽𝐽𝑛𝑛𝑛𝑛



Conclusions

Houck et al. (2015)

 Interaction of quantum parametric oscillators leads to breaking of the discrete time-translation 
symmetry, the “time-crystal” effect.

 In the quantum coherent regime, time-symmetry breaking maps onto a far-from-equilibrium 
quantum phase transition. Heating is exponentially slow away from the QPT.

 The QPT leads to a topologically nontrivial phase for a parametrically modulated spin/qubit chain

The system of coupled dissipative oscillators maps onto the Ising system with controlled 
connectivity. The system has a nontrivial “non-Hamiltonian” disorder and broken time symmetry



Floquet (quasienergy) states 𝜓𝜓𝜀𝜀(𝑡𝑡 + 𝜏𝜏𝐹𝐹) = exp −𝑖𝑖𝑖𝑖𝜏𝜏𝐹𝐹/ℏ 𝜓𝜓𝜀𝜀(𝑡𝑡)

Quasienergy (Floquet) states
Quantum mechanics of periodically driven systems.

No stationary eigenstates in a driven system. But there is time-translation symmetry

The Schrödinger equation: 𝑖𝑖𝑖𝜓̇𝜓 = 𝐻𝐻 𝑡𝑡 𝜓𝜓,    𝐻𝐻 𝑡𝑡 = 𝐻𝐻 𝑡𝑡 + 𝜏𝜏𝐹𝐹 , 𝜏𝜏𝐹𝐹 = ⁄2𝜋𝜋 𝜔𝜔𝐹𝐹

Bloch theorem: 𝜓𝜓𝒌𝒌 𝒓𝒓 + 𝑹𝑹 = exp 𝑖𝑖𝒌𝒌𝒌𝒌 𝜓𝜓𝒌𝒌 𝒓𝒓 ;

Expectation value of an observable: 𝐿𝐿 𝑡𝑡 = 〈𝜓𝜓 𝑡𝑡 𝐿𝐿 𝜓𝜓 𝑡𝑡 〉. For a Floquet state 𝐿𝐿 𝑡𝑡 + 𝜏𝜏𝐹𝐹 = 〈𝐿𝐿 𝑡𝑡 〉

Superposition: 𝜓𝜓 𝑡𝑡 = 𝐴𝐴1𝜓𝜓𝜀𝜀1 𝑡𝑡 + 𝐴𝐴2𝜓𝜓𝜀𝜀2 𝑡𝑡 ⇒

𝐿𝐿 𝑡𝑡 + 𝜏𝜏𝐹𝐹 = 𝐴𝐴1 2〈𝜓𝜓𝜀𝜀1 𝑡𝑡 𝐿𝐿 𝜓𝜓𝜀𝜀1 𝑡𝑡 〉 + 𝐴𝐴2 2〈𝜓𝜓𝜀𝜀2 𝑡𝑡 𝐿𝐿 𝜓𝜓𝜀𝜀2 𝑡𝑡 〉

+[𝐴𝐴1∗𝐴𝐴2 𝜓𝜓𝜀𝜀1 𝑡𝑡 𝐿𝐿 𝜓𝜓𝜀𝜀2 𝑡𝑡 exp
i 𝜀𝜀1 − 𝜀𝜀2 𝜏𝜏𝐹𝐹

ℏ
+ c. c. ]

If ⁄𝜀𝜀1 − 𝜀𝜀2 𝜏𝜏𝐹𝐹 ℏ = 𝜋𝜋 then 𝐿𝐿 𝑡𝑡 + 2𝜏𝜏𝐹𝐹 = 𝐿𝐿 𝑡𝑡 ⇒period doubling in the supersposition of states
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