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Parametric oscillator: time-symmetry breaking

Oscillator with a periodically modulated frequency: mq + 2I'mq + m(wg + F coswpt) q + yq3 =

Period doubling: the period of each state is 41 / wr. The states differ in phase by -

broken discrete time-translation symmetry
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New life: Time Crystals

Breaking time-translation symmetry.

Quantum Time Crystals F. Wilczek, PRL 109, 160401 (2012)

Absence of Quantum Time Crystals H. Watanabe and M. Oshikawa, PRL 114, 251603 (2015)

Many-body localized states: T4 7. =002 ; 16
!

Phase Structure of Driven Quantum Systems — o6k -, =008
V. Khemani, ... S. L. Sondhi, PRL 116, 250401 (2016) < ~e2y Joe

Floquet Time Crystals
D. Else, B. Bauer, & C. Nayak, PRL 117, 090402 (2016)
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Observation of a Discrete Time Crystal - 0
J. Zhang... C. Monroe, Nature (2017) N “;mm;-!:m 0.8
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Observation of discrete time-crystalline order... i 1aar ﬁ
S. Choi... M. Lukin, Nature (2017) 0 Iwwlwmmﬁw aof || ||
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Open questions:

» What is the role of many-body effects?
» Coherent vs dissipative
» |Is many-body localization necessary?

» Heating and “ prethermalization”

» Well-characterized systems can help

Weakly damped vibrational modes are advantageous:

the driving can be resonant and thus weak



Unbroken symmetry in a magnetooptical trap

Oscillating cold-atom (8°Rb, 400 uK) clouds in a periodically modulated trap (Kim et al, 2006; Heo et al. 2010)
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N;,;: < N.= equally populated clouds




Many-body symmetry breaking in a magnetooptical trap

Oscillating cold-atom (8°Rb, 400 uK) clouds in a periodically modulated trap (Kim et al, 2006; Heo et al. 2010)
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N;,;: < N.= equally populated clouds

Ising transition for all-to-all coupling

All critical exponents in full agreement with the mean-field theory
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Coherent quantum dynamics of coupled oscillators

1 :
Full Hamiltonian: H (t) = Xp Hp (1) = 2 Ximn €nmndm 1D, 2D, not necessarily
nearest-neighbor coupling

1 2 1 2 2 1 4
Hn(t) — Epn + E(wo'l'F COS (‘)Ft) an + qun

Solid-state physics picture: modulated narrow-band optical phonons
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Coherent quantum dynamics of coupled oscillators

1 :
Full Hamiltonian: H (t) = Xp Hp (1) = 2 Ximn €nmndm 1D, 2D, not necessarily
nearest-neighbor coupling

1 2 1 2 2 1 4
Hn(t) — Epn + E(wo'l'F COS (‘)Ft) an + ZVCIn

Rotating frame, frequency wr/2 (wr = 2wy): switch to quadratures

qn = C[— Qnsin (wpt/2) + B, cos(wgt/2)]

mwpg

Pn=""5—

> C[Q, cos(wgt/2) + B, sin(wpt/2)]

[Qn, P] =ih"

Rotating wave approximation = time-independent Hamiltonian in terms of the quadratures

1
H(t) = G; G= Zgn (Qn; Pn) - E z Vnm(Qan + Pan), Vnm X €Enm
n

m#*n

1 1 1 wp(wp — 2wy) small detuning
9QP) =7 @+ P +5(1-W P —S(1+WQ*  p=—

|F| small drive



Single-oscillator picture

1 1 1
g(Q,P) =1(Q2 + P2)? +§(1—H)P2 —5(1+H)Q2; p = wp(Wp — 20)/|F|

Evolution of the “Floquet” Hamiltonian with the varying scaled frequency detuning:

Effective “potential”

g(Q,0)

9(Q,0)
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bistability, u > —1

no vibrations, u < —1 criticality, e = —1
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Coherent regime: quantum phase transition

The many-body RWA Hamiltonian G = },, g(Q,,, B,) — %Z;nn Vi (QmQn + PnBy)

Resonators form a periodic system, “ferromagnetic” coupling

_ 1/2
Extremum of G: Q,, = 0, u < pigpr, and @, = £Q, Q = (.U — .UQPT) 1> popr (B, =0) O ’

Excitation spectra

w(k) w(k) w(k)
k \/ K k
The gap above QPT (1 < pgpr) AtQPT w(k) x k,k — 0 The gap below QPT (i > pgpr) is
1/2 _ 1/2
[(#QPT —ut 2)(HQPT — H)] 21Q] = Z(IJ — .uQPT)

Hopr = =1+ ) Vam, 1= wp(wp — 200)/IF]
n

A similar, but topologically nontrivial transition, for a resonantly modulated spin chain (MD, PRA 2019)



Heating

The full many-body Hamiltonian G = Y, g(Q,, B,) — %Z;nn Vi (QmQn + PPy + (Getr—ror€2“F + c.c.)

Absorption: from counter-rotating terms. Requires resonance: nw (k) = 2wy = n > 1 = exponentially small
overlap integral away from the critical point.

No MBL is required for the time crystal, no high-frequency limit is required to prevent heating.

Excitation spectra

w(k) w(k) w(k)
k k k
The gap above QPT (1 < pgpr) AtQPT w(k) x k,k — 0 The gap below QPT (i > pgpr) is
1/2 _ 1/2
[(#QPT —ut 2)(HQPT — H)] 21Q] = Z(IJ — .uQPT)

Hopr = =1+ ) Vam, 1= wp(wp — 260)/IF]

n



Dissipative dynamics

9(Q,0)

Dissipation= classical- and quantum-noise-induced “over-barrier” switching between
the period-two states,

g ral i

Wa(n) = C exp(— Rf,”)/’ﬁ) Q
/!
A —“quantum temperature”, for kzT > hwy, h — kgT;
cf. W « exp(—AU/kgT)
o=-—1 oc=1

9n(Qn,0) Im(Qm,0)

\ l \ , Uncoupled oscillators: Wl(n) = W_(;l). Each oscillator
Q, Qn vibrates at the same frequency wg/2, The phases, i.e.,

the occupied minima of g,, are uncorrelated. No

symmetry breaking in a large systerm

Experiment on classical switching: L. Lapidus, D. Enzer, and G. Gabrielse, PRL (1999)



Coupling-induced change of the switching rates

Coupled oscillators m and n: If oscillator m is in state o, g,(Q,,0) Im(Qm,0)
the time-translation symmetry for oscillator n is broken i
|
“weak tilt”. The change of the switching “activation Q, Qm
barrier” is linear in the coupling "
\
\
\
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W™ = Cexp (— R((,n)/h), R™ = R 4 spWM nth oscillator mth oscillator !
- :
5Rgn) = oy, z OnmJnm 9 * . . !
m#n 5 .
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The sign of 6R§n) IS opposite in opposite wells; the equilibrium position g;,, has opposite signs in opposite wells

Symmetry lifting by an extra drive at wz/2, classical: D. Ryvkine and MD, PRE (2006); observed: I. Mahboob et al., APL (2010);

numerical work on coupled quantum oscillators: H. Goto, J. Phys. Soc. Japan (2019), N. Loérch et al., PRR (2019) and refs. therein.



Coupling-induced change of the switching rates

Coupled oscillators m and n: If oscillator m is in state o, 9n(Q,,0)

the time-translation symmetry for oscillator n is broken

|

W = cexp(—RIV/R),  RYY =RM 4 5RYV Cn

6Rc(7n) = Op Z . OmJnm
m#n

nth oscillator

\

mth oscillator

Mapping on the system of coupled spins: Wa(n) =W exp[—0, ¥ JumOm/ A

Ising system, except that /,,,,, # ., if n@anoresonators are not identical!

J.m IS not the coupling energy! Calculating it is fun
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Weak coupling: order and time frustration

“ferromagnetic” coupling /,,,, > 0 = same phase state

gn(Qn:O) gm(Qm,O)
Qn \\VZ Qm

If the coupling is attractive, oscillators vibrate with the same phase

|

gn(Qn:o)
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Im(Qm,0)

“antiferromagnetic”: J,,,, < 0 = possible frustration
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, Effectively strong” coupling: metastable many-body states

Quantum dynamics near the bifurcation point 4 = ug where period-two

vibrations emerge

d0u_ U Ny s o |
dt 30, rom Qm + quantum noise,

m
~ 1 x 1 x —
U(Q)=—50Q%+7Q% Vo |t — pip|™

= simple explicit form of /..,

Very close to the bifurcation point the coupling becomes strong — multiple global minima

of the effective energy, no matching on a spin system
~ 1 ~ ~
E = Zn U (Qn) - EZmin Vanan

Quantum-noise induced diffusion of coupled particles in a potential landscape



Conclusions

» Interaction of quantum parametric oscillators leads to breaking of the discrete time-translation

symmetry, the “time-crystal” effect.

» In the quantum coherent regime, time-symmetry breaking maps onto a far-from-equilibrium

guantum phase transition. Heating is exponentially slow away from the QPT.

» The QPT leads to atopologically nontrivial phase for a parametrically modulated spin/qubit chain

» The system of coupled dissipative oscillators maps onto the Ising system with controlled
connectivity. The system has a nontrivial “non-Hamiltonian” disorder and broken time symmetry
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Quasienergy (Floquet) states

Quantum mechanics of periodically driven systems.

The Schrodinger equation: iRy = H(t)y, H(t) = H(t +15), TF = 21/ wp
No stationary eigenstates in a driven system. But there is time-translation symmetry

Floquet (quasienergy) states . (t + t5) = exp(—iety /)P (1)

Expectation value of an observable: (L(t)) = (Y (t)|L|y(t)). For a Floquet state (L(t + 7z)) = (L(t))

Superposition: Y (t) = A1, (1) + Az, (£) =

(Lt +7p)) = 14112 (e, (DILIYe, () +A2|* (Ye, (OIL e, (D)

FIA A (b, (DIL I, (O)exp r(gl ‘;2)"”] fecl

If (¢, — &5)1r/h = mwthen (L(t + 27z)) = (L(t)) =>period doubling in the supersposition of states

Bloch theorem: Y, (r + R) = exp(ikR) Yy, (1);
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