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Future	Direc�ons
-	explora�on	of	polaritonic	behaviour	and	many-body	states
-	increased	coupling	efficiency	β:

																																													-	integra�on	into	more	complex
																																															photonic	circuits	

			evanescent	field	enhancement	
			(slot	waveguides)
															resonant	feedback	
															(ring	resonators,	
															Fabry-Perot	cavi�es)
										

Dipole-Dipole	Interac�on

β=0.99	
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-	life�me-limited	transi�on	
			at	1.5	K	(Γ0	=	30	MHz)
-	quantum	efficiency	close	to
			unity
-	50	%	emission	on	00-ZPL	ηemission	spectrum	of	a	single	DBT	molecule

simplified	level	scheme	of	dye	molecules

host	guest	system

Quantum	Emi�er:	Dye	Molecule
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I . EX T IN CT ION IN A N A N OGU IDEFIG. 1: Powerf ow in the waveguide. See text for details.

We consider a single resonant point scatterer on the
axis of a singlemode f ber, as depicted in Fig.1, and de-
rivetheextinction signal frompower balancearguments.
Pin is the incoming powe n the waveguide mode and
PT and PR denote the transmitted and ref ected powers
at the f ber ends, respectively. The incoming power is
linked to the irradiance at the emitter position via the
e↵ective mode area Ae↵=

R
d2r "(r )|E wg(r )|2

"(0)|E wg(0)|2 = Pin/ I (0) .
Theemitter scattersapower Pwg into theguided mode

(symmetrically in both directions, so that 2PR = Pwg),
whereas Pout is lost. In terms of the scattering cross
section sc, the total scattered power is Psc = sc I (0),
hence

Psc = Pwg + Pout = sc

Ae↵
Pin. (1)

The emitter-waveguide coupling ef ciency is

=
Pwg

Pwg + Pout
⇡ sc

2Ae↵
, (2)

(when the Purcell e↵ect is negligible, i.e. wg/ bulk ⇡ 1,
see Fig.2 of the main text), which can be rigorously de-
rived as the ratio between the power-f ux density in the
guided mode with respect to all the modes [1, 2]. The
factor 2 in Eq.(2) can be understood from the optical
theorem and ensures that full ref ection occurs at ideal

emitter-mode coupling ( = 1) [3, 4]. In fact, while
Psc ⇡ 2 Pin suggests an “extinction paradox” for large
, interference e↵ects ensure global energy conservation

Pin = PR +PT +Pout. This completes a closed system of
equations from which we f nd

PT

Pin
= (1 )2 ,

PR

Pin
= 2 ,

Pout

Pin
= 2 (1 ), (3)

cf. Ref. [5]. Finally, the power removed from the mode
in transmission is (Pin PT )/ P = 1 T = 2 2.

I I . L IN EW IDT H DIST R IBU T ION S

Fig.2 depicts the linewidth distribution of extinction
signals. The data was aquired over a frequency range
of 200 GHz in the wing of the inhomogenous broaden-
ing at 771 nm. The excitation power was chosen to be
below the typical saturation parameter. The center of
the observed linewidth distribution agrees with the ho-
mogenous linewidth of 30 MHz for DBT in naphtalene
which was reported previously in [6] for thespectral site
at 757 nm.

FIG. 2: Linewidth distribution of extinction signals.
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Coherent	Interac�on	in	a	Nanoguide	[2]

up	to	11%	
ex�nc�on	for	a	
single	molecule	
due	to	
destruc�ve	
interference

inhomogeneous	broadening:	coherent	transmission	of	a	nanoguide
(5500	molecular	resonances)

power	transmission

transmission

reflec�on

red-shi�ed	fluorescence

resonance	fluorescence

-	nano	capillary	filled	with	dye	doped	core
-	coupling	efficiency	up	to	18%

Tunability	of	Molecular	Resonances
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-	burried	naphthalene	
		bar	waveguides
-	integrated	ITO	micro-
		electrodes	along	ac�ve	
		waveguide	region	

100	μm	

ITO	electrode

waveguide

fusion	bonded	
glass	surface

naphthalene
reservoir

microscope	image	of	waveguide	
with	ITO	electrodes

voltage	sweeped	excita�on	spectrum	at	two	different	
posi�ons	(P1,	P2)	along	waveguide

-	DC-Stark	shi�	up	to	1	GHz/V,	
		tuning	range	of	100	GHz
-	random	spa�al	distribu�on	
		of	emi�ers

												search	for	crossing	pairs
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-	an�-crossing	feature
-	coupling	strength	of	β	Γ		
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-	bragg	resonance
-	cavity	forma�on		

Spectral	features	are	highly	sensi�ve	to	rela�ve	emi�er	spacing.
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Studies	of	photons	 interac�ng	with	 a	well-defined	 arrangement	of	 single	
emi�ers	 are	 experimentally	 challenging	 either	 due	 to	 lack	 of	 spa�al	 or	
spectral	 control	 over	 the	 atomic	 resonances.	 Dielectric	 waveguides	
interfacing	solid	state	emi�ers	as	quantum	dots,	NV-centers	or	molecules	
are	 promising	 systems	with	 high	 control	 over	 the	 photonic	 poten�al	 for	
exploring	the	rich	phenomena	of	polaritonic	behaviour	 in	one	dimension	 	
[1].		

Introduc�on

current	status our	goal

d>>λ
1D	light	ma�er	

interface
far	field	coupling
	of	two	emi�ers

shared	polaritonic	
excita�on


