Tracking nanoparticle movement is highly desirable in many scientific areas, and various imaging methods have been employed to achieve this goal. Interferometric scattering (iSCAT) microscopy has been particularly successful in combining very high spatial and temporal resolution for tracking small nanoparticles in all three dimensions. However, previous works have been limited to an axial range of only a few hundred nanometers. Here, we present a robust and efficient measurement and analysis strategy for three-dimensional tracking of nanoparticles at high speed and with nanometer precision. After discussing the principle of our approach using synthetic data, we showcase the performance of the method by tracking gold nanoparticles with diameters ranging from 10 to 80 nm in water, demonstrating an axial tracking range from 4 μm for the smallest particles up to over 30 μm for the larger ones. We point out the limitations and robustness of our system across various noise levels and discuss its promise for applications in cell biology and material science, where the three-dimensional motion of nanoparticles in complex media is of interest.
iSCAT microscopy and particle tracking with tailored spatial coherence
Mahdi Mazaheri, Kiarash Kasaian, David Albrecht, Jan Renger, Tobias Utikal, Cornelia Holler, Vahid Sandoghdar
Interferometric scattering (iSCAT) microscopy has demonstrated unparalleled performance among label-free optical methods for detecting and imaging isolated nanoparticles and molecules. However, when imaging complex structures such as biological cells, the superposition of the scattering fields from different locations of the sample leads to a speckle-like background, posing a significant challenge in deciphering fine features. Here, we show that by controlling the spatial coherence of the illumination, one can eliminate the spurious speckle without sacrificing sensitivity. We demonstrate this approach by positioning a rotating diffuser coupled with an adjustable lens and an iris in the illumination path. We report on imaging at a high frame rate of 25 kHz and across a large field of view of 100µm×100µm, while maintaining diffraction-limited resolution. We showcase the advantages of these features by three-dimensional (3D) tracking over 1000 vesicles in a single COS-7 cell and by imaging the dynamics of the endoplasmic reticulum (ER) network. Our approach opens the door to the combination of label-free imaging, sensitive detection, and 3D high-speed tracking using wide-field iSCAT microscopy.
Point spread function in interferometric scattering microscopy (iSCAT). Part I: aberrations in defocusing and axial localization
Reza Gholami Mahmoodabadi, Richard W. Taylor, Martin Kaller, Susann Spindler, Mahdi Mazaheri, Kiarash Kasaian, Vahid Sandoghdar
Interferometric scattering (iSCAT) microscopy is an emerging label-free technique optimized for the sensitive detection of nano-matter. Previous iSCAT studies have approximated the point spread function in iSCAT by a Gaussian intensity distribution. However, recent efforts to track the mobility of nanoparticles in challenging speckle environments and over extended axial ranges has necessitated a quantitative description of the interferometric point spread function (iPSF). We present a robust vectorial diffraction model for the iPSF in tandem with experimental measurements and rigorous FDTD simulations. We examine the iPSF under various imaging scenarios to understand how aberrations due to the experimental configuration encode information about the nanoparticle. We show that the lateral shape of the iPSF can be used to achieve nanometric three-dimensional localization over an extended axial range on the order of 10 µm either by means of a fit to an analytical model or calibration-free unsupervised machine learning. Our results have immediate implications for three-dimensional single particle tracking in complex scattering media.
Point spread function in interferometric scattering microscopy (iSCAT). Part I: aberrations in defocusing and axial localization
Reza Gholami Mahmoodabadi, Richard W. Taylor, Martin Kaller, Susann Spindler, Mahdi Mazaheri, Kiarash Kasaian, Vahid Sandoghdar
Interferometric scattering (iSCAT) microscopy is an emerging label-free technique optimized for the sensitive detection of nano-matter. Previous iSCAT studies have approximated the point spread function in iSCAT by a Gaussian intensity distribution. However, recent efforts to track the mobility of nanoparticles in challenging speckle environments and over extended axial ranges has necessitated a quantitative description of the interferometric point spread function (iPSF). We present a robust vectorial diffraction model for the iPSF in tandem with experimental measurements and rigorous FDTD simulations. We examine the iPSF under various imaging scenarios to understand how aberrations due to the experimental configuration encode information about the nanoparticle. We show that the lateral shape of the iPSF can be used to achieve nanometric three-dimensional localization over an extended axial range on the order of 10 µm either by means of a fit to an analytical model or calibration-free unsupervised machine learning. Our results have immediate implications for three-dimensional single particle tracking in complex scattering media.
MPL Research Centers and Schools
Data Collection
This website uses cookies to ensure you get the best experience on our website.