My research is about mechanical measurements of cells and liquid biomolecular condensates or protein droplets. I use and develop high-throughput microfluidic techniques and analysis tools for this. My work especially focuses on unravelling time dependent effects of biomaterial deformation. My motivation is that these insights help uncovering new distinctions between cell types and to find correlations between cell mechanics and diseases.
Shear rheology of methyl cellulose based solutions for cell mechanical measurements at high shear rates
Beyza Büyükurganci, Santanu Kumar Basu, Markus Neuner, Jochen Guck, Andreas Wierschem, Felix Reichel
Methyl cellulose (MC) is a widely used material in various microfluidic applications in biology. Due to its biocompatibility, it has become a popular crowding agent for microfluidic cell deformability measurements, which usually operate at high shear rates (>10 000 s−1). However, a full rheological characterization of methyl cellulose solutions under these conditions has not yet been reported. With this study, we provide a full shear-rheological description for solutions of up to 1% MC dissolved in phosphate-buffered saline (PBS) that are commonly used in real-time deformability cytometry (RT-DC). We characterized three different MC-PBS solutions used for cell mechanical measurements in RT-DC with three different shear rheometer setups to cover a range of shear rates from 0.1–150 000 s−1. We report viscosities and normal stress differences in this regime. Viscosity functions can be well described using a Carreau–Yasuda model. Furthermore, we present the temperature dependency of shear viscosity and first normal stress difference of these solutions. Our results show that methyl cellulose solutions behave like power-law liquids in viscosity and exhibit first normal stress difference at shear rates between 5000–150 000 s−1. We construct a general viscosity equation for each MC solution at a certain shear rate and temperature. Furthermore, we investigated how MC concentration influences the rheology of the solutions and found the entanglement concentration at around 0.64 w/w%. Our results help to better understand the viscoelastic behavior of MC solutions, which can now be considered when modelling stresses in microfluidic channels.
Changes in Blood Cell Deformability in Chorea-Acanthocytosis and Effects of Treatment With Dasatinib or Lithium
Felix Reichel, Martin Kräter, Kevin Peikert, Hannes Glaß, Philipp Rosendahl, Maik Herbig, Alejandro Rivera Prieto, Alexander Kihm, Giel Bosman, et al.
Frontiers in Physiology
13
852946
(2022)
|
Journal
|
PDF
Misshaped red blood cells (RBCs), characterized by thorn-like protrusions known as acanthocytes, are a key diagnostic feature in Chorea-Acanthocytosis (ChAc), a rare neurodegenerative disorder. The altered RBC morphology likely influences their biomechanical properties which are crucial for the cells to pass the microvasculature. Here, we investigated blood cell deformability of five ChAc patients compared to healthy controls during up to 1-year individual off-label treatment with the tyrosine kinase inhibitor dasatinib or several weeks with lithium. Measurements with two microfluidic techniques allowed us to assess RBC deformability under different shear stresses. Furthermore, we characterized leukocyte stiffness at high shear stresses. The results showed that blood cell deformability–including both RBCs and leukocytes - in general was altered in ChAc patients compared to healthy donors. Therefore, this study shows for the first time an impairment of leukocyte properties in ChAc. During treatment with dasatinib or lithium, we observed alterations in RBC deformability and a stiffness increase for leukocytes. The hematological phenotype of ChAc patients hinted at a reorganization of the cytoskeleton in blood cells which partly explains the altered mechanical properties observed here. These findings highlight the need for a systematic assessment of the contribution of impaired blood cell mechanics to the clinical manifestation of ChAc.
Intelligent image-based deformation-assisted cell sorting with molecular specificity
Ahmad Ahsan Nawaz, Marta Urbanska, Maik Herbig, Martin Nötzel, Martin Kräter, Philipp Rosendahl, Christoph Herold, Nicole Töpfner, Markéta Kubánková, et al.
Nature Methods
17(6)
595-599
(2020)
|
Journal
|
PDF
Although label-free cell sorting is desirable for providing pristine cells for further analysis or use, current approaches lack molecular specificity and speed. Here, we combine real-time fluorescence and deformability cytometry with sorting based on standing surface acoustic waves and transfer molecular specificity to image-based sorting using an efficient deep neural network. In addition to general performance, we demonstrate the utility of this method by sorting neutrophils from whole blood without labels.<br> Sorting RT-FDC combines real-time fluorescence and deformability cytometry with sorting based on standing surface acoustic waves to transfer molecular specificity to label-free, image-based cell sorting using an efficient deep neural network.
I studied physics in my Bachelor and Master with an emphasis on biological physics at the Technische Universität Dresden from 2011-2017. After that, I started my PhD in the lab of Jochen Guck and relocated to the MPL in 2019.