- Home
- About Us
- MPL People
- Michael Frosz
Dr. Michael Frosz
- Head of TDSU Fibre Fabrication
- Room: A 2.228
- Tel.: +49 9131 7133 219
Frequency conversion in a hydrogen-filled hollow-core fiber using continuous-wave fields
Anica Hamer, Frank Vewinger, Thorsten Peters, Michael Frosz, Simon Stellmer
Optics Letters 49 6952-6955 (2024) | Journal
In large-area quantum networks based on optical fibers, photons are the fundamental carriers of information as so-called flying qubits. They may also serve as the interconnect between different components of a hybrid architecture, which might comprise atomic and solid-state platforms operating at visible or near-infrared wavelengths, as well as optical links in the telecom band. Quantum frequency conversion is the pathway to change the color of a single photon while preserving its quantum state. Currently, nonlinear crystals are utilized for this process. However, their performance is limited by their acceptance bandwidth, tunability, polarization sensitivity, and undesired background emission. A promising alternative is based on stimulated Raman scattering (SRS) in gases. Here, we demonstrate polarization-preserving frequency conversion in a hydrogen-filled antiresonant hollow-core fiber. This approach holds promises for seamless integration into optical fiber networks and interfaces to single emitters. Disparate from related experiments that employ a pulsed pump field, we here take advantage of two coherent continuous-wave pump fields.
Perfluorocarbons: a material platform for tunable nonlinear frequency conversion in liquid filled suspended core fibers
Johannes Hofmann, Wenqin Huang, Torsten Wieduwilt, Henrik Schneidewind, Michael H. Frosz, Markus A. Schmidt
This study investigates supercontinuum generation in suspended core fibers filled with perfluorocarbons, highlighting their potential for ultrafast nonlinear frequency conversion. Spectroscopic absorption and refractive index dispersions are analyzed for three perfluorocarbons in the visible and near-infrared. Experiments show that the insertion of these liquids into suspended core fibers changes the dispersion landscape, enabling broadband soliton-based supercontinuum generation from 0.6 µm to 2.4 µm due to the creation of a confined domain of anomalous dispersion in the telecom range. In addition, temperature-dependent output spectrum modulation is demonstrated, highlighting the utility of the platform in photonic applications such as spectroscopy, sensing, and microscopy.
Low-noise supercontinuum generation in chiral all-normal dispersion photonic crystal fibers
Markus Lippl, Michael H. Frosz, Nicolas Y. Joly
We present the advantages of supercontinuum generation in chiral, therefore circularly birefringent, all-normal dispersion fibers. Due to the absence of nonlinear power transfer between the polarization eigenstates of the fiber, chiral all-normal dispersion fibers do not exhibit any polarization instabilities and thus are an ideal platform for a low-noise supercontinuum generation. By pumping a chiral all-normal dispersion fiber at 802 nm, we obtained an octave-spanning, robustly circularly polarized supercontinuum with a low noise.
Hollow-Core Fiber for Single-Mode, Low Loss Transmission of Broadband UV Light
D. Dorer, M. H. Frosz, S. Haze, M. Deiß, W. Schoch, J. Hecker Denschlag
IEEE Journal of Selected Topics in Quantum Electronics 30(6) 4300106 (2023) | Journal
We report on an anti-resonant hollow-core fiber (AR-HCF) designed for stable transmission of laser light in a broad wavelength range of 250 nm to 450 nm. We tested for wavelengths of 300 nm and 320 nm. The characterized fiber shows a low transmission power attenuation of 0.13 dB/m and an excellent single-mode profile. The fiber maintains stable transmission after an exposure of tens of hours with up to 60 mW CW-laser light and shows no indication of solarization effects. We further tested its performance under bending and observed a small critical bending radius of about 6 cm. These characteristics make the presented fiber a useful tool for many applications, especially in quantum optics labs where it may be instrumental to improve on stability and compactness.
Low-Volume Reaction Monitoring of Carbon Dot Light Absorbers in Optofluidic Microreactors
Takashi Lawson, Alexander S. Gentleman , Ava Lage, Carla Casadevall, Jie Xiao, Tristan Petit, Michael Frosz, Erwin Reisner, Tijmen G. Euser
Optical monitoring and screening of photocatalytic batch reactions using cuvettes ex situ is time-consuming, requires substantial amounts of samples, and does not allow the analysis of species with low extinction coefficients. Hollow-core photonic crystal fibers (HC-PCFs) provide an innovative approach for in situ reaction detection using ultraviolet–visible absorption spectroscopy, with the potential for high-throughput automation using extremely low sample volumes with high sensitivity for monitoring of the analyte. HC-PCFs use interference effects to guide light at the center of a microfluidic channel and use this to enhance detection sensitivity. They open the possibility of comprehensively studying photocatalysts to extract structure–activity relationships, which is unfeasible with similar reaction volume, time, and sensitivity in cuvettes. Here, we demonstrate the use of HC-PCF microreactors for the screening of the electron transfer properties of carbon dots (CDs), a nanometer-sized material that is emerging as a homogeneous light absorber in photocatalysis. The CD-driven photoreduction reaction of viologens (XV2+) to the corresponding radical monocation XV•+ is monitored in situ as a model reaction, using a sample volume of 1 μL per measurement and with a detectability of <1 μM. A range of different reaction conditions have been systematically studied, including different types of CDs (i.e., amorphous, graphitic, and graphitic nitrogen-doped CDs), surface chemistry, viologens, and electron donors. Furthermore, the excitation irradiance was varied to study its effect on the photoreduction rate. The findings are correlated with the electron transfer properties of CDs based on their electronic structure characterized by soft X-ray absorption spectroscopy. Optofluidic microreactors with real-time optical detection provide unique insight into the reaction dynamics of photocatalytic systems and could form the basis of future automated catalyst screening platforms, where samples are only available on small scales or at a high cost.
Protecting Quantum Modes in Optical Fibers
Muhammad Abdullah Butt, Paul Roth, Gordon Wong, Michael Frosz, Luis Sanchez-Soto, E. A. Anashkina, A. V. Andrianov, Peter Banzer, Philip Russell, et al.
Polarization-preserving fibers maintain the two polarization states of an orthogonal basis. Quantum communication, however, requires sending at least two nonorthogonal states and these cannot both be preserved. We present an alternative scheme that allows for using polarization encoding in a fiber not only in the discrete, but also in the continuous-variable regime. For the example of a helically twisted photonic crystal fiber, we experimentally demonstrate that using appropriate nonorthogonal modes, the polarization-preserving fiber does not fully scramble these modes over the full Poincaré sphere, but that the output polarization will stay on a great circle; that is, within a one-dimensional protected subspace, which can be parametrized by a single variable. This allows for more efficient measurements of quantum excitations in nonorthogonal modes.
Modulational instability and spectral broadening of vortex modes in chiral photonic crystal fibers
Paul Roth, Philip Russell, Michael Frosz, Yang Chen, Gordon Wong
Journal of Lightwave Technology 41(7) 2061-2069 (2023) | Journal
We report on intra- and inter-modal four-wave-mixing (FWM) in N-fold rotationally symmetric (C_N) single- and multi-core chiral photonic crystal fiber (PCF), created by spinning the preform during fiber drawing. The non-circular modal field is forced to rotate as it propagates along the fiber, resulting in circular birefringence and robust maintenance of circular polarization state. Multi-core chiral C_N PCF supports vortex-carrying helical Bloch modes (HBMs) in which the degeneracy between clockwise and counter-clockwise vortices is lifted. This makes possible new kinds of intermodal polarization modulational instability (PMI). We develop PMI theory for vortex HBMs, and illustrate the results by a series of experiments in which two or more PMI sidebands with different vorticities and polarization states are selectively generated by adjusting the polarization state and topological charge of the pump light. In every case both the topological charge and the spin of the pump light are conserved. We also report generation of a broadband supercontinuum in a single circularly polarized vortex mode.
In situ Detection of Cobaloxime Intermediates During Photocatalysis Using Hollow-Core Photonic Crystal Fiber Microreactors
Takashi Lawson, Alexander S. Gentleman, Jonathan Pinnell, Annika Eisenschmidt, Daniel Antón-García, Michael Frosz, Erwin Reisner, Tijmen G. Euser
Angewandte Chemie, International Edition in English 62(9) e202214788 (2023) | Journal
Hollow-core photonic crystal fibers (HC-PCFs) provide a novel approach for in situ UV/Vis spectroscopy with enhanced detection sensitivity. Here, we demonstrate that longer optical path lengths than afforded by conventional cuvette-based UV/Vis spectroscopy can be used to detect and identify the CoI and CoII states in hydrogen-evolving cobaloxime catalysts, with spectral identification aided by comparison with DFT-simulated spectra. Our findings show that there are two types of signals observed for these molecular catalysts; a transient signal and a steady-state signal, with the former being assigned to the CoI state and the latter being assigned to the CoII state. These observations lend support to a unimolecular pathway, rather than a bimolecular pathway, for hydrogen evolution. This study highlights the utility of fiber-based microreactors for understanding these and a much wider range of homogeneous photocatalytic systems in the future.
Selective phase filtering of charged beams with laser-driven antiresonant hollow-core fibers
Luca Genovese, Max Kellermeier, Frank Mayet, Klaus Floettmann, Gordon Wong, Michael Frosz, Ralph Assmann, Philip Russell, Francois Lemery
Emerging accelerator concepts increasingly rely on the combination of high-frequency electromagnetic radiation with electron beams, enabling longitudinal phase space manipulation which supports a variety of advanced applications. The handshake between electron beams and radiation is conventionally provided by magnetic undulators which unfortunately require a balance between the electron beam energy, undulator parameters, and laser wavelength. Here we propose a scheme using laser-driven large-core antiresonant optical fibers to manipulate electron beams. We explore two general cases using TM01 and HE11 modes. In the former, we show that large energy modulations O(100 keV). can be achieved while maintaining the overall electron beam quality. Further, we show that by using larger field strengths O(100 MV/m) the resulting transverse forces can be exploited with beam-matching conditions to filter arbitrary phases from the modulated electron bunch, leading to the production of ≈100 attosecond FWHM microbunches. Finally, we also investigate the application of the transverse dipole HE11 mode and find it suitable for supporting time-resolved electron beam measurements with sub-attosecond resolution. We expect the findings to be widely appealing to high-charge pump-probe experiments, metrology, and accelerator science.
Optical Vortex Brillouin Laser
Xinglin Zeng, Philip Russell, Yang Chen, Zheqi Wang, Gordon Wong, Paul Roth, Michael Frosz, Birgit Stiller
Optical vortices, which have been extensively studied over the last decades, offer an additional degree of freedom useful in many applications, such as optical tweezers and quantum control. Stimulated Brillouin scattering (SBS), providing a narrow linewidth and a strong nonlinear response, has been used to realize quasi-continuous wave lasers. Here, stable oscillation of optical vortices and acoustic modes in a Brillouin laser based on chiral photonic crystal fiber (PCF) is reported, which robustly supports helical Bloch modes (HBMs) that carry circularly polarized optical vortex and display circular birefringence. A narrow-linewidth Brillouin fiber laser that stably emits 1st- and 2nd-order vortex-carrying HBMs is implemented. Angular momentum conservation selection rules dictate that pump and backward Brillouin signals have opposite topological charge and spin. Additionally, it is shown that when the chiral PCF is placed within a laser ring cavity, the linewidth-narrowing associated with lasing permits the peak of the Brillouin gain that corresponds to acoustic mode to be measured with resolution of 10 kHz and accuracy of 520 kHz. The results pave the way to a new generation of vortex-carrying SBS systems with applications in optical tweezers, quantum information processing, and vortex-carrying nonreciprocal systems.
Temporal Self-Compression and Self-Frequency Shift of Submicrojoule Pulses at a Repetition Rate of 8 MHz
Francesco Tani, Jacob Lampen, Martin Butryn, Michael Frosz, Jie Jiang, Martin E. Fermann, Philip Russell
Physical Review Applied 18 064069 (2022) | Journal
We combine soliton dynamics in gas-filled hollow-core photonic crystal fibers with a state-of-the-art fiber laser to realize a turnkey system producing few-femtosecond pulses at 8-MHz repetition rate at pump energies as low as 220 nJ. Furthermore, by exploiting the soliton self-frequency shift in a second hydrogen-filled hollow-core fiber, we efficiently generate pulses as short as 22 fs, continuously tunable from 1100 to 1474 nm.
Nonreciprocal vortex isolator via topology-selective stimulated Brillouin scattering
Xinglin Zeng, Philip Russell, Christian Wolff , Michael Frosz, Gordon Wong, Birgit Stiller
Optical nonreciprocity, which breaks the symmetry between forward and backward propagating optical waves, has become vital in photonic systems and enables many key applications. So far, all the existing nonreciprocal systems are implemented for linearly or randomly polarized fundamental modes. Optical vortex modes, with wavefronts that spiral around the central axis of propagation, have been extensively studied over the past decades and offer an additional degree of freedom useful in many applications. Here, we report a light-driven nonreciprocal isolation system for optical vortex modes based on topology-selective stimulated Brillouin scattering (SBS) in chiral photonic crystal fiber. The device can be reconfigured as an amplifier or an isolator by adjusting the frequency of the control signal. The experimental results show vortex isolation of 22 decibels (dB), which is at the state of the art in fundamental mode isolators using SBS. This device may find applications in optical communications, fiber lasers, quantum information processing, and optical tweezers.
Label-free monitoring of proteins in optofluidic hollow-core photonic crystal fibres
Jan R. Heck , Ermanno Miele, Ralf Mouthaan, Michael Frosz, Tuomas P J Knowles, Tijmen G Euser
Methods and Applications in Fluorescence 10 045008 (2022) | Journal
The fluorescent detection of proteins without labels or stains, which affect their behaviour and require additional genetic or chemical preparation, has broad applications to biological research. However, standard approaches require large sample volumes or analyse only a small fraction of the sample. Here we use optofluidic hollow-core photonic crystal fibres to detect and quantify sub-microlitre volumes of unmodified bovine serum albumin (BSA) protein down to 100 nM concentrations. The optofluidic fibre's waveguiding properties are optimised for guidance at the (auto)fluorescence emission wavelength, enabling fluorescence collection from a 10 cm long excitation region, increasing sensitivity. The observed spectra agree with spectra taken from a conventional cuvette-based fluorimeter, corrected for the guidance properties of the fibre. The BSA fluorescence depended linearly on BSA concentration, while only a small hysteresis effect was observed, suggesting limited biofouling of the fibre sensor. Finally, we briefly discuss how this method could be used to study aggregation kinetics. With small sample volumes, the ability to use unlabelled proteins, and continuous flow, the method will be of interest to a broad range of protein-related research.
Strong circular dichroism for the HE11 mode in twisted single-ring hollow-core photonic crystal fiber: erratum
Paul Roth, Yang Chen, Mehmet Can Günendi, Ramin Beravat, Nitin Edavalath, Michael Frosz, Goran Ahmed, Gordon Wong, Philip Russell
Recent work has revealed that the dispersion relation, given inOptica 5, 1315 (2018), for helicalBloch modes in a ring of capillaries surrounding a central hollowcore, is incorrect.Herewe correct this error and provide a revised version of Fig. 2. The overall conclusions of the original paper are unaffected.
Erratum to “Bragg Reflection and Conversion Between Helical Bloch Modes in Chiral Three-Core Photonic Crystal Fiber”
Sébastien Loranger, Yang Chen, Paul Roth, Michael Frosz, Gordon Wong, Philip Russell
The dispersion relation for the helical Bloch modes in this paper contains an error, which affects Equation (3) in the original manuscript, as well as Fig. 2. Otherwise the conclusions of the paper are unaffected.
Stern–Volmer analysis of photocatalyst fluorescence quenching within hollow-core photonic crystal fibre microreactors
Alexander S. Gentleman, Takashi Lawson, Matthew G. Ellis, Molly Davis, Jacob Turner-Dore, Alison S. H. Ryder, Michael Frosz, Maria Ciaccia, Erwin Reisner, et al.
We report the use of optofluidic hollow-core photonic crystal fibres as microreactors for Stern–Volmer (SV) luminescence quenching analysis of visible-light photocatalytic reactions. This technology enables measurements on nanolitre volumes and paves the way for automated SV analyses in continuous flow that minimise catalyst and reagent usage. The method is showcased using a recently developed photoredox-catalysed α-C–H alkylation reaction of unprotected primary alkylamines.
Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes
Ermanno Miele, Wesley M. Dose, Ilya Manyakin, Michael Frosz, Zachary Ruff, Michael F. L. De Volder, Clare P. Grey, Jeremy J. Baumberg, Tijmen G. Euser
Improved analytical tools are urgently required to identify degradation and failure mechanisms in Li-ion batteries. However, understanding and ultimately avoiding these detrimental mechanisms requires continuous tracking of complex electrochemical processes in different battery components. Here, we report an operando spectroscopy method that enables monitoring the chemistry of a carbonate-based liquid electrolyte during electrochemical cycling in Li-ion batteries with a graphite anode and a LiNi0.8Mn0.1Co0.1O2 cathode. By embedding a hollow-core optical fibre probe inside a lab-scale pouch cell, we demonstrate the effective evolution of the liquid electrolyte species by background-free Raman spectroscopy. The analysis of the spectroscopy measurements reveals changes in the ratio of carbonate solvents and electrolyte additives as a function of the cell voltage and show the potential to track the lithium-ion solvation dynamics. The proposed operando methodology contributes to understanding better the current Li-ion battery limitations and paves the way for studies of the degradation mechanisms in different electrochemical energy storage systems.
Stimulated Brillouin scattering in chiral photonic crystal fiber
Xinglin Zeng, Wenbin He, Michael Frosz, Andreas Geilen, Paul Roth, Gordon Wong, Philip Russell, Birgit Stiller
Stimulated Brillouin scattering (SBS) has many applications; for example, in sensing, microwave photonics, and signal processing. Here, we report the first experimental study of SBS in chiral photonic crystal fiber (PCF), which displays optical activity and robustly maintains circular polarization states against external perturbations. As a result, circularly polarized pump light is cleanly backscattered into a Stokes signal with the orthogonal circular polarization state, as is required by angular momentum conservation. By comparison, untwisted PCF generates a Stokes signal with an unpredictable polarization state, owing to its high sensitivity to external perturbations. We use chiral PCF to realize a circularly polarized continuous-wave Brillouin laser. The results pave the way for a new generation of stable circularly polarized SBS systems with applications in quantum manipulation, optical tweezers, optical gyroscopes, and fiber sensors.
Efficient Excitation of High-Purity Modes in Arbitrary Waveguide Geometries
Ralf Mouthaan, Peter J. Christopher, Jonathan Pinnell, Michael Frosz, George Gordon, Timothy D. Wilkinson, Tijmen G. Euser
Journal of Lightwave Technology 40(4) 1150-1160 (2022) | Journal
A general method is presented for exciting discrete modes in waveguides of arbitrary geometry. Guided modes supported by the waveguide are first calculated using a finite difference frequency domain model. High efficiency holograms to excite these discrete modes are then generated using the Direct Search hologram generation algorithm. The Direct Search algorithm is optimised such that the inherent properties of waveguide modes are exploited to give faster execution times. A nodeless antiresonant photonic crystal fibre is considered as a test geometry, in which high-purity modes are experimentally excited and in-coupling efficiencies of up to 32.8% are obtained.
Scaling rules for high quality soliton self-compression in hollow-core fibers
Daniel Schade, Felix Köttig, Johannes Köhler, Michael H. Frosz, Philip St.J. Russell, Francesco Tani
Optics Express 29(12) 19147-19158 (2021) | Journal
Soliton dynamics can be used to temporally compress laser pulses to few fs durations in many different spectral regions. Here we study analytically, numerically and experimentally the scaling of soliton dynamics in noble gas-filled hollow-core fibers. We identify an optimal parameter region, taking account of higher-order dispersion, photoionization, self-focusing, and modulational instability. Although for single-shots the effects of photoionization can be reduced by using lighter noble gases, they become increasingly important as the repetition rate rises. For the same optical nonlinearity, the higher pressure and longer diffusion times of the lighter gases can considerably enhance the long-term effects of ionization, as a result of pulse-by-pulse buildup of refractive index changes. To illustrate the counter-intuitive nature of these predictions, we compressed 250 fs pulses at 1030 nm in an 80-cm-long hollow-core photonic crystal fiber (core radius 15 µm) to ∼5 fs duration in argon and neon, and found that, although neon performed better at a repetition rate of 1 MHz, stable compression in argon was still possible up to 10 MHz.
Optofluidic photonic crystal fiber microreactors for in-situ studies of carbon nanodot-driven photoreduction
Philipp Koehler, Takashi Lawson, Julian Neises, Janina Willkomm, Benjamin C. M. Martindale , Georgina A. M. Hutton, Daniel Antón-García, Ava Lage, Alexander S. Gentleman, et al.
Analytical Chemistry 93(2) 895-901 (2021) | Journal
Performing quantitative in situ spectroscopic analysis on minuscule sample volumes is a common difficulty in photochemistry. To address this challenge, we use a hollow-core photonic crystal fiber (HC-PCF) that guides light at the center of a microscale liquid channel and acts as an optofluidic microreactor with a reaction volume of less than 35 nL. The system was used to demonstrate in situ optical detection of photoreduction processes that are key components of many photocatalytic reaction schemes. The photoreduction of viologens (XV2+) to the radical XV•+ in a homogeneous mixture with carbon nanodot (CND) light absorbers is studied for a range of different carbon dots and viologens. Time-resolved absorption spectra, measured over several UV irradiation cycles, are interpreted with a quantitative kinetic model to determine photoreduction and photobleaching rate constants. The powerful combination of time-resolved, low-volume absorption spectroscopy and kinetic modeling highlights the potential of optofluidic microreactors as a highly sensitive, quantitative, and rapid screening platform for novel photocatalysts and flow chemistry in general.
Cross-phase modulational instability of circularly polarized helical Bloch modes carrying optical vortices in a chiral three-core photonic crystal fiber
Paul Roth, Michael Frosz, Linda Weise, Philip Russell, Gordon Wong
Optics Letters 46(2) 174-177 (2021) | Journal
We report the first, to the best of our knowledge, observation of cross-phase modulational instability (XPMI) of circularly polarized helical Bloch modes carrying optical vortices in a twisted photonic crystal fiber with a three-fold symmetric core, formed by spinning the fiber preform during the draw. When the fiber is pumped by a superposition of left-circular polarization (LCP) and right-circular polarization (RCP) modes, a pair of orthogonal circularly polarized sidebands of opposite topological charge is generated. When, on the other hand, a pure LCP (or RCP) mode is launched, the XPMI gain is zero, and no sidebands are seen. This observation has not been seen before in any system and is unique to chiral structures with N-fold rotational symmetry. The polarization state and topological charge of the generated sidebands are measured. By decomposing the helical Bloch modes into their azimuthal harmonics, we are able to deduce the selection rules for the appearance of modulational instability sidebands. We showed that the four waves in the nonlinear mixing process must exhibit the same set of azimuthal harmonic orders.
Seven-octave high-brightness and carrier-envelope-phase-stable light source
Ugaitz Elu, Luke Maidment, Lenard Vamos, Francesco Tani, David Novoa, Michael H. Frosz, Valeriy Badikov, Dmitrii Badikov, Valentin Petrov, et al.
Nature Photonics 15 277-280 (2020) | Journal
High-brightness sources of coherent and few-cycle-duration light waveforms with spectral coverage from the ultraviolet to the terahertz would offer unprecedented versatility and opportunities for a wide range of applications from bio-chemical sensing1 to time-resolved and nonlinear spectroscopy, and to attosecond light-wave electronics. Combinations of various sources with frequency conversion and supercontinuum generation can provide relatively large spectral coverage, but many applications require a much broader spectral range and low-jitter synchronization for time-domain measurements. Here, we present a carrier-envelope-phase (CEP)-stable light source, seeded by a mid-infrared frequency comb, with simultaneous spectral coverage across seven optical octaves, from the ultraviolet (340 nm) into the terahertz (40,000 nm). Combining soliton self-compression and dispersive wave generation in an anti-resonant-reflection photonic-crystal fibre with intra-pulse difference frequency generation in BaGa2GeSe6, the spectral brightness is two to five orders of magnitude above that of synchrotron sources. This will enable high-dynamic-range spectroscopies and provide numerous opportunities in attosecond physics and material sciences.
Three-photon head-mounted microscope for imaging deep cortical layers in freely moving rats
Alexandr Klioutchnikov, Damian J Wallace, Michael H. Frosz, Richard Zeltner, Jürgen Sawinski, Verena Pawlak, Kay-Michael Voit, Philip St. J. Russell, Jason N. D. Kerr
We designed a head-mounted three-photon microscope for imaging deep cortical layer neuronal activity in a freely moving rat. Delivery of high-energy excitation pulses at 1,320 nm required both a hollow-core fiber whose transmission properties did not change with fiber movement and dispersion compensation. These developments enabled imaging at >1.1 mm below the cortical surface and stable imaging of layer 5 euronal activity for >1 h in freely moving rats performing a range of behaviors.
Three-photon head-mounted microscope for imaging deep cortical layers in freely moving rats
Alexandr Klioutchnikov, Damian James Wallace, Michael H. Frosz, Richard Zeltner, Jürgen Sawinski, Verena Pawlak, Kay-Michael Voit, Philip St. J. Russell, Jason Kerr
Nature methods 17 509-513 (2020) | Journal
We designed a head-mounted three-photon microscope for imaging deep cortical layer neuronal activity in a freely moving rat. Delivery of high-energy excitation pulses at 1,320 nm required both a hollow-core fiber whose transmission properties did not change with fiber movement and dispersion compensation. These developments enabled imaging at >1.1 mm below the cortical surface and stable imaging of layer 5 euronal activity for >1 h in freely moving rats performing a range of behaviors.
Bragg Reflection and Conversion Between Helical Bloch Modes in Chiral Three-Core Photonic Crystal Fiber
Sébastien Loranger, Yang Chen, Paul Roth, Michael Frosz, Gordon Wong, Philip Russell
Journal of Lightwave Technology 38(15) 4100-4107 (2020) | Journal
Optical fiber modes carrying orbital angular momentum (OAM) have many applications, for example in mode-division-multiplexing for optical communications. The natural guided modes of N-fold rotationally symmetric optical fibers, such as most photonic crystal fibers, are helical Bloch modes (HBMs). HBMs consist of a superposition of azimuthal harmonics (order m) of order l_A(m)=l_A(0)+mN. When such fibers are twisted, these modes become circularly and azimuthally birefringent, that is to say HBMs with equal and opposite values of l_A(0) and spin s are non-degenerate. In this article we report the use of Bragg mirrors to reflect and convert HBMs in a twisted three-core photonic crystal fiber, and show that by writing a tilted fiber Bragg grating (FBG), reflection between HBMs of different orders becomes possible, with high wavelength-selectivity. We measure the near-field phase and amplitude distribution of the reflected HBMs interferometrically, and demonstrate good agreement with theory. This new type of FBG has potential applications in fiber lasers, sensing, quantum optics, and in any situation where creation, conversion, and reflection of OAM-carrying modes is required.
Progress toward third-order parametric down-conversion in optical fibers
A. Cavanna, J. Hammer, C. Okoth, E. Ortiz-Ricardo, H. Cruz-Ramirez, K. Garay-Palmett, A. B. U’Ren, M. Frosz, X. Jiang, et al.
Physical Review A 101 033840 (2020) | Journal
Optical fibers have been considered an optimal platform for third-order parametric down-conversion since they can potentially overcome the weak third-order nonlinearity by their long interaction length. Here we present, in the first part, a theoretical derivation for the conversion rate both in the case of spontaneous generation and in the presence of a seed beam. Then we review three types of optical fibers and we examine their properties in terms of conversion efficiency and practical feasibility.
Robust excitation and Raman conversion of guided vortices in a chiral gas-filled photonic crystal fiber
Sona Davtyan, Yang Chen, Michael Frosz, Philip Russell, David Novoa
Optics Letters 45(7) 1766-1769 (2020) | Journal
The unique ring-shaped intensity patterns and helical phase fronts of optical vortices make them useful in many applications. Here we report for the first time, to the best of our knowledge, efficient Raman frequency conversion between vortex modes in a twisted hydrogen-filled single-ring hollow core photonic crystal fiber (SR-PCF). High-fidelity transmission of optical vortices in an untwisted SR-PCF becomes<br>more and more difficult as the orbital angular momentum (OAM) order increases, due to scattering at structural imperfections in the fiber microstructure. In a helically twisted<br>SR-PCF, however, the degeneracy between left- and righthanded versions of the same mode is lifted, with the result<br>that they are topologically protected from such scattering. With launch efficiencies of ∼75%, a high damage threshold and broadband guidance, these fibers are ideal for performing nonlinear experiments that require the polarization<br>state and azimuthal order of the interacting modes to be preserved over long distances. Vortex coherence waves of internal molecular motion carrying angular momentum are excited in the gas, permitting the polarization and OAM of the Raman bands to be tailored, even in spectral regions where conventional solid-core waveguides are opaque or susceptible to optical damage.
Full-field characterization of helical Bloch modes guided in twisted coreless photonic crystal fiber
Paul Roth, Gordon Wong, Michael Frosz, Goran Ahmed, Philip Russell
Optics Letters 44(20) 5049-5052 (2019) | Journal
It was recently reported that a photonic crystal fiber (PCF) with no structural core guides light if a permanent chiral twist is introduced by spinning the fiber preform during the draw. The intriguing guidance mechanism behind this novel effect has many remarkable features; for example, it intrinsically supports circularly polarized helical Bloch modes (HBMs) that carry multiple optical vortices, making twisted PCFs of interest in fields such as optical micromanipulation, imaging, quantum optics, and optical communications. Here we report for the first time, to the best of our knowledge, that a twisted coreless PCF supports not just one but a family of guided HBMs, each member of which has a unique transverse field distribution and harmonic spectrum. By making detailed interferometric measurements of the near-field phase and amplitude distributions of HBMs, and expanding them as a series of Bessel beams, we are able to extract the amplitude of each azimuthal and radial HBM harmonic. Good agreement is found with the numerical solutions of Maxwell’s equations. The results shed light on the properties of this curious new optical phenomenon.
Non-invasive real-time characterization of hollow-core photonic crystal fibers using whispering gallery mode spectroscopy
Michael Frosz, Riccardo Pennetta, Michael Enders, Goran Ahmed, Philip Russell
Optics Express 27(21) 30842-30851 (2019) | Journal
Single-ring hollow-core photonic crystal fibers, consisting of a ring of one or two thin-walled glass capillaries surrounding a central hollow core, hold great promise for use in optical communications and beam delivery, and are already being successfully exploited for extreme pulse compression and efficient wavelength conversion in gases. However, achieving low loss over long (km) lengths requires highly accurate maintenance of the microstructure—a major fabrication challenge. In certain applications, for example adiabatic mode transformers, it is advantageous to taper the fibers, but no technique exists for measuring the delicate and complex microstructure without first cleaving the taper at several positions along its length. In this Letter, we present a simple non-destructive optical method for measuring the diameter of individual capillaries. Based on recording the spectrum scattered from whispering gallery modes excited in the capillary walls, the technique is highly robust, allowing real-time measurement of fiber structure during the draw with sub-micron accuracy.
Generation of broadband circularly polarized supercontinuum light in twisted photonic crystal fibers
Rafal Sopalla, Gordon Wong, Nicolas Joly, Michael Frosz, Xin Jiang, Goran Ahmed, Philip Russell
Optics Letters 44(16) 3964-3967 (2019) | Journal
We compare the properties of the broadband supercontinuum (SC) generated in twisted and untwisted solid-core photonic crystal fibers when pumped by circularly polarized<br>40 picosecond laser pulses at 1064 nm. In the helically twisted fiber, fabricated by spinning the preform during the draw, the SC is robustly circularly polarized across its entire<br>spectrum whereas, in the straight fiber, axial fluctuations in linear birefringence and polarization-dependent nonlinear effects cause the polarization state to vary randomly with the wavelength. Theoretical modelling confirms the experimental results. Helically twisted photonic crystal fibers permit the generation of pure circularly polarized SC light with excellent polarization stability against fluctuations in input power and environmental perturbations.
MRI-guided robotic arm drives optogenetic fMRI with concurrent Ca2+ recording
Y Chen, P Pais-Roldán, X Chen, Michael Frosz, X Yu
Nature Communications 10(1) 2536 1-11 (2019) | Journal
Optical fiber-mediated optogenetic activation and neuronal Ca2+ recording in combination with fMRI provide a multi-modal fMRI platform. Here, we developed an MRI-guided robotic arm (MgRA) as a flexible positioning system with high precision to real-time assist optical fiber brain intervention for multi-modal animal fMRI. Besides the ex vivo precision evaluation, we present the highly reliable brain activity patterns in the projected basal forebrain regions upon MgRA-driven optogenetic stimulation in the lateral hypothalamus. Also, we show the step-wise optical fiber targeting thalamic nuclei and map the region-specific functional connectivity with whole-brain fMRI accompanied by simultaneous calcium recordings to specify its circuit-specificity. The MgRA also guides the real-time microinjection to specific deep brain nuclei, which is demonstrated by an Mn-enhanced MRI method. The MgRA represents a clear advantage over the standard stereotaxic-based fiber implantation and opens a broad avenue to investigate the circuit-specific functional brain mapping with the multi-modal fMRI platform.
Fabrication and non-destructive characterization of tapered single-ring hollow-core photonic crystal fiber
Riccardo Pennetta, Michael T. Enders, Michael H. Frosz, Francesco Tani, Philip St. J. Russell
APL Photonics 4 056105 1-6 (2019) | Journal
We report on the properties of tapered single-ring hollow-core photonic-crystal fibers, with a particular emphasis on applications in nonlinear optics. The simplicity of these structures allows the use of non-invasive side-illumination to assess the quality of the tapering process, by<br>observing the scattered far-field spectrum originating from excitation of whispering-gallery modes in the cladding capillaries. We investigate the conditions that ensure adiabatic propagation in the up- and down-tapers, and the scaling of loss-bands (created by anti-crossings between the core mode and modes in the capillary walls) with taper ratio. We also present an analytical model for the pressure profile along a tapered hollow fiber under differential pumping
Pump-probe multi-species CARS in a hollow-core PCF with a 20 ppm detection limit under ambient conditions
Rinat Tyumenev, Luisa Späth, Barbara M. Trabold, Goran Ahmed, Michael H. Frosz, Philip St. J. Russell
Optics Letters 44(10) 2486-2489 (2019) | Journal
We report coherent anti-Stokes Raman spectroscopy (CARS) in a gas-filled single-ring hollow-core photonic crystal fiber (SR-PCF) using a pump-probe configuration. The long collinear path length offered by an SR-PCF strongly enhances the efficiency of the Raman interactions. Pressure tuning the zero-dispersion wavelength (ZDW) of the SR-PCF allows the Raman coherence prepared by seeded pumping at 515 nm to be used in the visible for phase-matched generation of an anti-Stokes signal from a probe in the ultraviolet. The unique dispersion profile in the vicinity of the ZDW enables simultaneous phase matching of all known Raman transitions. We demonstrate that simultaneous multi-species CARS with a detection limit of 20 ppm is possible with only 20 kW of peak pump power delivered by a single laser source.
Spatio-temporal measurement of ionization-induced modal index changes in gas-filled PCF by prism-assisted side-coupling
Barbara M. Trabold, Mallika I. Suresh, Johannes R. Köhler, Michael H. Frosz, Francesco Tani, Philip St. J. Russell
Optics Express 27(10) 14392-14399 (2019) | Journal
We report the use of prism-assisted side-coupling to investigate the spatio-temporal dynamics of photoionization in an Ar-filled hollow-core photonic crystal fiber. By launching four different LP core modes we are able to probe temporal and spatial changes in the modal refractive index on timescales from a few hundred picoseconds to several hundred microseconds after the ionization event. We experimentally analyze the underlying gas density waves and find good agreement with quantitative and qualitative hydrodynamic predictions. Moreover, we observe periodic modulations in the MHz-range lasting for a few microseconds, indicating nanometer-scale vibrations of the fiber structure, driven by gas density waves.
Polarization-Tailored Raman Frequency Conversion in Chiral Gas-Filled Hollow-Core Photonic Crystal Fibers
Sona Davtyan, David Novoa, Yang Chen, Michael H. Frosz, Philip St. J. Russell
Physical Review Letters 122(14) 143902 1-5 (2019) | Journal
Broadband-tunable sources of circularly polarized light are crucial in fields such as laser science, biomedicine, and spectroscopy. Conventional sources rely on nonlinear wavelength conversion and polarization control using standard optical components and are limited by the availability of suitably transparent crystals and glasses. Although a gas-filled hollow-core photonic crystal fiber provides pressuretunable dispersion, long well-controlled optical path lengths, and high Raman conversion efficiency, it is unable to preserve a circular polarization state, typically exhibiting weak linear birefringence. Here we report a revolutionary approach based on a helically twisted hollow-core photonic crystal fiber, which displays circular birefringence, thus robustly maintaining a circular polarization state against external perturbations. This makes it possible to generate pure circularly polarized Stokes and anti-Stokes signals by rotational Raman scattering in hydrogen. The polarization state of the frequency-shifted Raman bands can be continuously varied by tuning the gas pressure in the vicinity of the gain-suppression point. The results pave the way to a new generation of compact and efficient fiber-based sources of broadband light with a fully controllable polarization state.
Excitation of higher-order modes in optofluidic photonic crystal fiber
Andrei Ruskuc, Philipp Koehler, Marius A. Weber, Ana Andres-Arroyo, Michael H. Frosz, Philip St. J. Russell, Tijmen G. Euser
Higher-order modes up to LP33 are controllably excited in water-filled kagomé- and bandgap-style hollow-core photonic crystal fibers (HC-PCF). A spatial light modulator is used to create amplitude and phase distributions that closely match those of the fiber modes, resulting in typical launch efficiencies of 10–20% into the liquid-filled core. Modes, excited across the visible wavelength range, closely resemble those observed in air-filled kagomé HC-PCF and match numerical simulations. Mode indices are obtained by launching plane-waves at specific angles onto the fiber input-face and comparing the resulting intensity pattern to that of a particular mode. These results provide a framework for spatially-resolved sensing in HC-PCF microreactors and fiber-based optical manipulation.
Strong circular dichroism for the HE11 mode in twisted single-ring hollow-core photonic crystal fiber
Paul Roth, Yang Chen, Mehmet Can Günendi, Ramin Beravat, Nitin N. Edavalath, Michael H. Frosz, Goran Ahmed, Gordon K. L. Wong, Philip St. J. Russell
We report a series of experimental, analytical, and numerical studies demonstrating strong circular dichroism for the HE11-like core mode in helically twisted hollow-core single-ring photonic crystal fiber (SR-PCF), formed by spinning the preform during fiber drawing. In the SR-PCFs studied, the hollow core is surrounded by a single ring of nontouching capillaries. Coupling between these capillaries results in the formation of helical Bloch modes carrying orbital angular momentum. When twisted, strong circular birefringence appears in the ring, so that coupling to the core mode is possible for only one circular polarization state. The result is a SR-PCF that acts as a circular polarizer, offering 1.4 dB/m for the low-loss polarization state and 9.7 dB/m for the high-loss state over a 25 nm band centered at 1593 nm wavelength. In addition, we report for the first time that the vector fields of the helical Bloch modes are perfectly periodic when evaluated in cylindrical coordinates. Such fibers have many potential applications, such as generating circularly polarized light in gas-filled SR-PCF and realizing polarizing elements in the deep and vacuum ultraviolet.
Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF
Marco Cassataro, David Novoa, Mehmet C. Guenendi, Nitin N. Edavalath, Michael H. Frosz, John C. Travers, Philip St. J. Russell
OPTICS EXPRESS 25(7) 7637-7644 (2017) | Journal
We report generation of an ultrafast supercontinuum extending into the mid-infrared in gas-filled single-ring hollow-core photonic crystal fiber (SR-PCF) pumped by 1.7 mu m light from an optical parametric amplifier. The simple fiber structure offers shallow dispersion and flat transmission in the near and mid-infrared, enabling the generation of broadband spectra extending from 270 nm to 3.1 mu m, with a total energy of a few mu J. In addition, we demonstrate the emission of ultraviolet dispersive waves whose frequency can be tuned simply by adjusting the pump wavelength. SR-PCF thus constitutes an effective means of compressing and delivering tunable ultrafast pulses in the near and mid-infrared spectral regions. (C) 2017 Optical Society of America
Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers
Michael H. Frosz, Paul Roth, Mehmet C. Guenendi, Philip St. J. Russell
PHOTONICS RESEARCH 5(2) 88-91 (2017) | Journal
Understanding bend loss in single-ring hollow-core photonic crystal fibers (PCFs) is becoming of increasing importance as the fibers enter practical applications. While purely numerical approaches are useful, there is a need for a simpler analytical formalism that provides physical insight and can be directly used in the design of PCFs with low bend loss. We show theoretically and experimentally that a wavelength-dependent critical bend radius exists below which the bend loss reaches a maximum, and that this can be calculated from the structural parameters of a fiber using a simple analytical formula. This allows straightforward design of single-ring PCFs that are bend-insensitive for specified ranges of bend radius and wavelength. It also can be used to derive an expression for the bend radius that yields optimal higher-order mode suppression for a given fiber structure. (C) 2017 Chinese Laser Press
Continuously wavelength-tunable high harmonic generation via soliton dynamics
Francesco Tani, Michael H. Frosz, John C. Travers, Philip St. J. Russell
OPTICS LETTERS 42(9) 1768-1771 (2017) | Journal
We report the generation of high harmonics in a gas jet pumped by pulses self-compressed in a He-filled hollow-core photonic crystal fiber through the soliton effect. The gas jet is placed directly at the fiber output. As the energy increases, the ionization-induced soliton blueshift is transferred to the high harmonics, leading to emission bands that are continuously tunable from 17 to 45 eV. (C) 2017 Optical Society of America
Higher-order mode suppression in twisted single-ring hollow-core photonic crystal fibers
N. N. Edavalath, M. C. Guenendi, R. Beravat, G. K. L. Wong, M. H. Frosz, J. -M. Menard, P. St. J. Russell
OPTICS LETTERS 42(11) 2074-2077 (2017) | Journal
A hollow-core single-ring photonic crystal fiber (SR-PCF) consists of a ring of capillaries arranged around a central hollow core. Spinning the preform during drawing introduces a continuous helical twist, offering a novel means of controlling the modal properties of hollow-core SR-PCF. For example, twisting geometrically increases the effective axial propagation constant of the LP01-like modes of the capillaries, providing a means of optimizing the suppression of HOMs, which occurs when the LP11-like core mode phase-matches to the LP01-like modes of the surrounding capillaries. (In a straight fiber, optimum suppression occurs for a capillary-to-core diameter ratio d/D = 0.682.) Twisting also introduces circular birefringence (to be studied in a future Letter) and has a remarkable effect on the transverse intensity profiles of the higher-order core modes, forcing the two-lobed LP11-like mode in the untwisted fiber to become three-fold symmetric in the twisted case. These phenomena are explored by means of extensive numerical modeling, an analytical model, and a series of experiments. Prism-assisted side-coupling is used to measure the losses, refractive indices, and near-field patterns of individual fiber modes in both the straight and twisted cases. (C) 2017 Optical Society of America
High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier
Ugaitz Elu, Matthias Baudisch, Hugo Pires, Francesco Tani, Michael H. Frosz, Felix Koettig, Alexey Ermolov, Philip St J. Russell, Jens Biegert
OPTICA 4(9) 1024-1029 (2017) | Journal
In attosecond and strong-field physics, the acquisition of data in an acceptable time demands the combination of high peak power with high average power. We report a 21 W mid-IR optical parametric chirped pulse amplifier (OPCPA) that generates 131 mu J and 97 fs (sub-9-cycle) pulses at a 160 kHz repetition rate and at a center wavelength of 3.25 mu m. Pulse-to-pulse stability of the carrier envelope phase (CEP)-stable output is excellent with a 0.33% rms over 288 million pulses (30 min) and compression close to a single optical cycle was achieved through soliton self-compression inside a gas-filled mid-IR antiresonant-guiding photonic crystal fiber. Without any additional compression device, stable generation of 14.5 fs (1.35-optical-cycle) pulses was achieved at an average power of 9.6 W. The resulting peak power of 3.9 GW in combination with the near-single-cycle duration and intrinsic CEP stability makes our OPCPA a key-enabling technology for the next generation of extreme photonics, strong-field attosecond research, and coherent x-ray science. (C) 2017 Optical Society of America
Twist-induced guidance in coreless photonic crystal fiber: A helical channel for light
Ramin Beravat, Gordon K. L. Wong, Michael H. Frosz, Xiao Ming Xi, Philip St. J. Russell
SCIENCE ADVANCES 2(11) e1601421 (2016) | Journal
High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging
Lyubov V. Amitonova, Adrien Descloux, Joerg Petschulat, Michael H. Frosz, Goran Ahmed, Fehim Babic, Xin Jiang, Allard P. Mosk, Philip St. J. Russell, et al.
OPTICS LETTERS 41(3) 497-500 (2016) | Journal
We demonstrate that a high-numerical-aperture photonic crystal fiber allows lensless focusing at an unparalleled resolution by complex wavefront shaping. This paves the way toward high-resolution imaging exceeding the capabilities of imaging with multi-core single-mode optical fibers. We analyze the beam waist and power in the focal spot on the fiber output using different types of fibers and different wavefront shaping approaches. We show that the complex wavefront shaping technique, together with a properly designed multimode photonic crystal fiber, enables us to create a tightly focused spot on the desired position on the fiber output facet with a subwavelength beam waist. (C) 2016 Optical Society of America
Reducing losses in solid-core photonic crystal fibers using chlorine dehydration
Michael H. Frosz, Goran Ahmed, Nadezda Lapshina, Ralf Keding, Fehim Babic, Nicolas Y. Joly, Philip St. J. Russell
OPTICAL MATERIALS EXPRESS 6(9) UNSP 268413 (2016) | Journal
Supercontinuum generation in ZBLAN glass photonic crystal fiber with six nanobore cores
Xin Jiang, Nicolas Y. Joly, Martin A. Finger, Fehim Babic, Meng Pang, Rafal Sopalla, Michael H. Frosz, Samuel Poulain, Marcel Poulain, et al.
OPTICS LETTERS 41(18) 4245-4248 (2016) | Journal
Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes
Patrick Uebel, Mehmet C. Guenendi, Michael H. Frosz, Goran Ahmed, Nitin N. Edavalath, Jean-Michel Menard, Philip St. J. Russell
OPTICS LETTERS 41(9) 1961-1964 (2016) | Journal
We report a hollow-core photonic crystal fiber that is engineered so as to strongly suppress higher-order modes, i.e., to provide robust LP01 single-mode guidance in all the wavelength ranges where the fiber guides with low loss. Encircling the core is a single ring of nontouching glass elements whose modes are tailored to ensure resonant phase-matched coupling to higher-order core modes. We show that the resulting modal filtering effect depends on only one dimensionless shape parameter, akin to the well-known d/Lambda parameter for endlessly single-mode solid-core PCF. Fabricated fibers show higher-order mode losses some similar to 100 higher than for the LP01 mode, with LP01 losses <0.2 dB/m in the near-infrared and a spectral flatness similar to 1 dB over a >110 THz bandwidth. (C) 2016 Optical Society of America
Current sensing using circularly birefringent twisted solid-core photonic crystal fiber
R. Beravat, G. K. L. Wong, X. M. Xi, M. H. Frosz, P. St. J. Russell
OPTICS LETTERS 41(7) 1672-1675 (2016) | Journal
Continuously twisted solid-core photonic crystal fiber (PCF) exhibits pure circular birefringence (optical activity), making it ideal for current sensors based on the Faraday effect. By numerical analysis, we identify the PCF geometry for which the circular birefringence (which scales linearly with twist rate) is a maximum. For silica-air PCF, this occurs at a shape parameter (diameter-to-spacing ratio of the hollow channels) of 0.37 and a scale parameter (spacing-to-wavelength) of 1.51. This result is confirmed experimentally by testing a range of different structures. To demonstrate the effectiveness of twisted PCF as a current sensor, a length of fiber is placed on the axis of a 7.6 cm long solenoid, and the Faraday rotation is measured at different values of dc current. The system is then used to chart the wavelength dependence of the Verdet constant. (C) 2016 Optical Society of America
Compressing mu J-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages
K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, et al.
OPTICS LETTERS 40(7) 1238-1241 (2015) | Journal
Compression of 250-fs, 1-mu J pulses from a KLM Yb:YAG thin-disk oscillator down to 9.1 fs is demonstrated. A kagome-PCF with a 36-mu m core-diameter is used with a pressure gradient from 0 to 40 bar of krypton. Compression to 22 fs is achieved by 1200 fs(2) group-delay-dispersion provided by chirped mirrors. By coupling the output into a second kagome-PCF with a pressure gradient from 0 to 25 bar of argon, octave spanning spectral broadening via the soliton-effect is observed at 18-W average output power. Self-compression to 9.1 fs is measured, with compressibility to 5 fs predicted. Also observed is strong emission in the visible via dispersive wave generation, amounting to 4% of the total output power. (C) 2015 Optical Society of America
Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber
A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, P. St. J. Russell
PHYSICAL REVIEW A 92(3) 033821 (2015) | Journal
We report on the generation of a three-octave-wide supercontinuum extending from the vacuum ultraviolet (VUV) to the near infrared, spanning at least 113-1000 nm (i.e., 11-1.2eV), in He-filled hollow-core kagome-style photonic crystal fiber. Numerical simulations confirm that the main mechanism is an interaction between dispersive-wave emission and plasma-induced blue-shifted soliton recompression around the fiber zero dispersion frequency. The VUV part of the supercontinuum, the modeling of which proves to be coherent and possesses a simple phase structure, has sufficient bandwidth to support single-cycle pulses of 500 asec duration. We also demonstrate, in the same system, the generation of narrower-band VUV pulses through dispersive-wave emission, tunable from 120 to 200 nm with efficiencies exceeding 1% and VUV pulse energies in excess of 50 nJ.
Enhanced optical activity and circular dichroism in twisted photonic crystal fiber
G. K. L. Wong, X. M. Xi, M. H. Frosz, P. St. J. Russell
OPTICS LETTERS 40(20) 4639-4642 (2015) | Journal
We demonstrate experimentally and theoretically that the core-guided mode in helically twisted photonic crystal fiber exhibits resonantly enhanced optical activity and circular dichroism in the vicinity of anti-crossings with leaky orbital angular momentum (OAM) modes in the cladding. This arises because the anti-crossings for left and right circularly polarized core modes occur at slightly different wavelengths. (C) 2015 Optical Society of America
Real-time Doppler-assisted tomography of microstructured fibers by side-scattering
Alessio Stefani, Michael H. Frosz, Tijmen G. Euser, Gordon K. L. Wong, Philip St. J. Russell
OPTICS EXPRESS 22(21) 25570-25579 (2014) | Journal
We introduce the concept of Doppler-assisted tomography (DAT) and show that it can be applied successfully to non-invasive imaging of the internal microstructure of a photonic crystal fiber. The fiber is spun at similar to 10 Hz around its axis and laterally illuminated with a laser beam. Monitoring the time-dependent Doppler shift of the light scattered by the hollow channels permits the azimuthal angle and radial position of individual channels to be measured. An inverse Radon transform is used to construct an image of the microstructure from the frequency-modulated scattered signal. We also show that DAT can image sub-wavelength features and monitor the structure along a tapered fiber, which is not possible using other techniques without cutting up the taper into several short pieces or filling it with index-matching oil. The non-destructive nature of DAT means that it could potentially be applied to image the fiber microstructure as it emerges from the drawing tower, or indeed to carry out tomography on any transparent microstructured cylindrical object. (C) 2014 Optical Society of America
Orbital-angular-momentum-preserving helical Bloch modes in twisted photonic crystal fiber
X. M. Xi, G. K. L. Wong, M. H. Frosz, F. Babic, G. Ahmed, X. Jiang, T. G. Euser, P. St. J. Russell
OPTICA 1(3) 165-169 (2014) | Journal
In optical fiber telecommunications, there is much current work on the use of orbital angular momentum (OAM) modes for increasing channel capacity. Here we study the properties of a helically twisted photonic crystal fiber (PCF) that preserves the chirality of OAM modes of the same order, i.e., it inhibits scattering between an order +1 mode to an order -1 mode. This is achieved by thermally inducing a helical twist in a PCF with a novel three-bladed Y-shaped core. The effect is seen for twist periods of a few millimeters or less. We develop a novel scalar theory to analyze the properties of the twisted fiber, based on a helicoidal extension to Bloch wave theory. It yields results that are in excellent agreement with full finite element simulations. Since twisted PCFs with complex core structures can be produced in long lengths from a fiber drawing tower, they are of potential interest for increasing channel capacity in optical telecommunications, but the result is also of interest to the photonic crystal community, where a new kind of guided helical Bloch mode is sure to excite interest, and among the spin-orbit coupling community. (C) 2014 Optical Society of America
Damage-free single-mode transmission of deep-UV light in hollow-core PCF
F. Gebert, M. H. Frosz, T. Weiss, Y. Wan, A. Ermolov, N. Y. Joly, P. O. Schmidt, P. St. J. Russell
OPTICS EXPRESS 22(13) 15388-15396 (2014) | Journal
Transmission of UV light with high beam quality and pointing stability is desirable for many experiments in atomic, molecular and optical physics. In particular, laser cooling and coherent manipulation of trapped ions with transitions in the UV require stable, single-mode light delivery. Transmitting even similar to 2 mW CW light at 280 nm through silica solid-core fibers has previously been found to cause transmission degradation after just a few hours due to optical damage. We show that photonic crystal fiber of the kagome type can be used for effectively single-mode transmission with acceptable loss and bending sensitivity. No transmission degradation was observed even after >100 hours of operation with 15 mW CW input power. In addition it is shown that implementation of the fiber in a trapped ion experiment increases the coherence time of the internal state transfer due to an increase in beam pointing stability. (C) 2014 Optical Society of America
Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss
M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, P. St. J. Russell
OPTICS LETTERS 38(13) 2215-2217 (2013) | Journal
A 19-cell hollow-core photonic crystal fiber reaching 1.8 +/- 0.5 dB/km loss at 1530 nm is reported. Despite expanded corner holes in the first ring adjacent to the core, and only five cladding rings, the minimum loss is close to the previously published record of 1.7 dB/km at a comparable wavelength, achieved in a fiber with seven cladding rings. Since each additional cladding ring requires a significant increase in fabrication time and complexity, it is highly desirable to use as few as possible while still achieving low loss. Modeling results confirm that further reducing cladding deformations would yield only a small decrease in loss. This demonstrates that loss comparable to the previously demonstrated lowest-loss bandgap fibers can be achieved with fiber structures that are significantly simpler and faster to fabricate. (C) 2013 Optical Society of America
Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy
Petru Ghenuche, Silke Rammler, Nicolas Y. Joly, Michael Scharrer, Michael Frosz, Jerome Wenger, Philip St J. Russell, Herve Rigneault
OPTICS LETTERS 37(21) 4371-4373 (2012)
We demonstrate the use of a large-pitch Kagome-lattice hollow-core photonic crystal fiber probe for Raman spectroscopy. The large transmission bandwidth of the fiber enables both the excitation and Raman beams to be transmitted through the same fiber. As the excitation beam is mainly transmitted through air inside the hollow core, the silica luminescence background is reduced by over 2 orders of magnitude as compared to standard silica fiber probes, removing the need for fiber background subtraction. (C) 2012 Optical Society of America
Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber
Bobo Gu, Wu Yuan, Michael H. Frosz, A. Ping Zhang, Sailing He, Ole Bang
OPTICS LETTERS 37(5) 794-796 (2012)
We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber and does not require any advanced post-processing of the fiber. Strain sensitivity of -0.23 pm/mu epsilon is achieved experimentally and numerical simulations reveal that for the present fiber the sensitivity can be increased to -4.46 pm/mu epsilon by optimizing the pump wavelength and power. (C) 2012 Optical Society of America
© Max Planck Institute for the Science of Light