Efficient coupling of light to solid-state quantum targets by focusing from full solid angle necessitates mounting the targets without degrading the quality of the focal spot. We solve this difficulty by trapping nano-particles with optical tweezers. In proof-of-principle experiments we trap colloidal dot-in-rod nano particles. Furthermore, the deep parabolic mirror facilitates the efficient collection of photons emerging from a quantum emitter.
Our optical dipole trap is generated in the same way as the dipole modes employed in our coupling experiments, i.e. by focusing with a deep parabolic mirror. As a result, the trap stiffness and the depth of the trapping potential approach the optimum figures obtainable for focusing in free space. This makes our set-up also interesting for opto-mechanical experiments.