Welcome to the website of Biological Optomechanics Division
Cells are the basic entities of biological systems. They have particular physical properties, which enable them to navigate their 3D physical environment and fulfill their biological functions. We investigate these physical – mechanical and optical – properties of living cells and tissues using novel photonics and biophysical tools to test their biological importance. Our ultimate goal is the transfer of our findings to medical application in the fields of improved diagnosis of diseases and novel approaches in regenerative medicine.
On Jan. 31, 2023, the Physics Faculty of the Technical University (TU) of Dresden awarded two female scientists with the Dresden Physics 2022 Doctoral…
Mechanical properties of cells are very often connected to their state and function. They can thus serve as an intrinsic biophysical marker of cell state transitions, such as metastasis of cancer cells, activation of leukocytes, or progression through the cell cycle. Read More...
Cells actively sense and respond to a variety of mechanical signals — a process known as mechanosensing. Mechanical cues provided by the extracellular environment can modulate a wide spectrum of cellular events, including cell proliferation, differentiation and protein production. Read More...
Cells define and largely form their surrounding tissues and, in return, receive biochemical and physical cues from them. We are working on resolving this interdependence by quantifying these tissue mechanical properties, correlating them with biological function, investigating their origin and ultimately controlling them. Read More...
Biophotonics describes the interaction of light with cells and tissues. We are interested in the interaction between light and tissues which is governed by the optical properties of cells. Read More...
MPL Presseteam
Um unser Kommunikations- & Marketingteam zu kontaktieren, benutzen Sie bitte die Emailadresse: MPLpresse@mpl.mpg.de.
Weitere Informationen zu Presseanfragen oder den aktuellsten Pressemitteilungen und -bildern finden Sie auf unserer Presseseite.
Identification of a Distinct Monocyte-Driven Signature in Systemic Sclerosis Using Biophysical Phenotyping of Circulating Immune Cells
Alexandru-Emil Matei, Markéta Kubánková, Liyan Xu, Andrea-Hermina Györfi, Evgenia Boxberger, Despina Soteriou, Maria Papava, Julia Prater, Xuezhi Hong, et al.
Arthritis & Rheumatology
75(5)
768-781
(2023)
|
Journal
|
PDF
Objective<br>Pathologically activated circulating immune cells, including monocytes, play major roles in systemic sclerosis (SSc). Their functional characterization can provide crucial information with direct clinical relevance. However, tools for the evaluation of pathologic immune cell activation and, in general, of clinical outcomes in SSc are scarce. Biophysical phenotyping (including characterization of cell mechanics and morphology) provides access to a novel, mostly unexplored layer of information regarding pathophysiologic immune cell activation. We hypothesized that the biophysical phenotyping of circulating immune cells, reflecting their pathologic activation, can be used as a clinical tool for the evaluation and risk stratification of patients with SSc.<br><br>Methods<br>We performed biophysical phenotyping of circulating immune cells by real-time fluorescence and deformability cytometry (RT-FDC) in 63 SSc patients, 59 rheumatoid arthritis (RA) patients, 28 antineutrophil cytoplasmic antibody–associated vasculitis (AAV) patients, and 22 age- and sex-matched healthy donors.<br><br>Results<br>We identified a specific signature of biophysical properties of circulating immune cells in SSc patients that was mainly driven by monocytes. Since it is absent in RA and AAV, this signature reflects an SSc-specific monocyte activation rather than general inflammation. The biophysical properties of monocytes indicate current disease activity, the extent of skin or lung fibrosis, and the severity of manifestations of microvascular damage, as well as the risk of disease progression in SSc patients.<br><br>Conclusion<br>Changes in the biophysical properties of circulating immune cells reflect their pathologic activation in SSc patients and are associated with clinical outcomes. As a high-throughput approach that requires minimal preparations, RT-FDC–based biophysical phenotyping of monocytes can serve as a tool for the evaluation and risk stratification of patients with SSc.
Dynamics of cell rounding during detachment
Agata Nyga, Katarzyna Plak, Martin Kräter, Marta Urbanska, Kyoohyun Kim, Jochen Guck, Buzz Baum
Animal cells undergo repeated shape changes, for example during mitotic cell rounding. Cell rounding can be also observed in interphase cells, for example when cancer cells switch from a mesenchymal to an amoeboid mode of cell migration. Nevertheless, it remains unclear how interphase cells round up. In this paper we show that a partial loss of substrate adhesion triggers actomyosin-dependent cortical remodelling and ERM activation, which facilitates further adhesion loss causing cells to round. While the path of rounding in this case superficially resembles mitotic rounding in involving ERM phosphorylation, retraction fiber formation, and cortical remodelling downstream of ROCK, it does not require Ect2. This work provides insights into the way partial loss of adhesion actives cortical remodelling to drive cell detachment from the substrate. This is important to consider when studying the mechanics of cells in suspension, for example using methods like real-time deformability cytometry (RT-DC).
Rapid single-cell physical phenotyping of mechanically dissociated tissue biopsies
Despina Soteriou, Markéta Kubánková, Christine Schweitzer, Rocío López-Posadas, Rahmita Pradhan, Oana-Maria Thoma, Andrea-Hermina Györfi, Alexandru-Emil Matei, Maximilian Waldner, et al.
nature biomedical engineering
(2023)
|
Journal
|
PDF
During surgery, rapid and accurate histopathological diagnosis is essential for clinical decision making. Yet the prevalent method of intra-operative consultation pathology is intensive in time, labour and costs, and requires the expertise of trained pathologists. Here we show that biopsy samples can be analysed within 30 min by sequentially assessing the physical phenotypes of singularized suspended cells dissociated from the tissues. The diagnostic method combines the enzyme-free mechanical dissociation of tissues, real-time deformability cytometry at rates of 100–1,000 cells s−1 and data analysis by unsupervised dimensionality reduction and logistic regression. Physical phenotype parameters extracted from brightfield images of single cells distinguished cell subpopulations in various tissues, enhancing or even substituting measurements of molecular markers. We used the method to quantify the degree of colon inflammation and to accurately discriminate healthy and tumorous tissue in biopsy samples of mouse and human colons. This fast and label-free approach may aid the intra-operative detection of pathological changes in solid biopsies.
The Max Planck Institute is located right next to the Science Campus of the Friedrich-Alexander-University Erlangen-Nuremberg, on its northern edge. See the information page on how to find us.
MPL Newsletter
Stay up-to-date with MPL’s latest research via our Newsletter.