Willkommen auf der Homepage der Abteilung für biologische Optomechanik
Zellen sind die grundlegenden Einheiten biologischer Systeme. Sie haben besondere physikalische Eigenschaften, die es ihnen ermöglichen, sich in ihrer physikalischen 3D-Umgebung zu bewegen und ihre biologischen Funktionen zu erfüllen. Wir untersuchen diese physikalischen - mechanischen und optischen - Eigenschaften von lebenden Zellen und Geweben mit Hilfe neuartiger photonischer und biophysikalischer Werkzeuge, um ihre biologische Bedeutung zu testen. Unser Ziel ist der Transfer unserer Erkenntnisse in die medizinische Anwendung auf den Gebieten der verbesserten Diagnose von Krankheiten und neuer Ansätze in der regenerativen Medizin.
Die Fakultät Physik der Technischen Universität (TU) Dresden hat am 31.1.2023 zwei Wissenschaftlerinnen den Promotionspreis für Physik 2022 verliehen,…
Mechanical properties of cells are very often connected to their state and function. They can thus serve as an intrinsic biophysical marker of cell state transitions, such as metastasis of cancer cells, activation of leukocytes, or progression through the cell cycle. Read More...
Cells actively sense and respond to a variety of mechanical signals — a process known as mechanosensing. Mechanical cues provided by the extracellular environment can modulate a wide spectrum of cellular events, including cell proliferation, differentiation and protein production. Read More...
Cells define and largely form their surrounding tissues and, in return, receive biochemical and physical cues from them. We are working on resolving this interdependence by quantifying these tissue mechanical properties, correlating them with biological function, investigating their origin and ultimately controlling them. Read More...
Biophotonics describes the interaction of light with cells and tissues. We are interested in the interaction between light and tissues which is governed by the optical properties of cells. Read More...
MPL Presseteam
Um unser Kommunikations- & Marketingteam zu kontaktieren, benutzen Sie bitte die Emailadresse: MPLpresse@mpl.mpg.de.
Weitere Informationen zu Presseanfragen oder den aktuellsten Pressemitteilungen und -bildern finden Sie auf unserer Presseseite.
Identification of a Distinct Monocyte-Driven Signature in Systemic Sclerosis Using Biophysical Phenotyping of Circulating Immune Cells
Alexandru-Emil Matei, Markéta Kubánková, Liyan Xu, Andrea-Hermina Györfi, Evgenia Boxberger, Despina Soteriou, Maria Papava, Julia Prater, Xuezhi Hong, et al.
Arthritis & Rheumatology
75(5)
768-781
(2023)
|
Journal
|
PDF
Objective<br>Pathologically activated circulating immune cells, including monocytes, play major roles in systemic sclerosis (SSc). Their functional characterization can provide crucial information with direct clinical relevance. However, tools for the evaluation of pathologic immune cell activation and, in general, of clinical outcomes in SSc are scarce. Biophysical phenotyping (including characterization of cell mechanics and morphology) provides access to a novel, mostly unexplored layer of information regarding pathophysiologic immune cell activation. We hypothesized that the biophysical phenotyping of circulating immune cells, reflecting their pathologic activation, can be used as a clinical tool for the evaluation and risk stratification of patients with SSc.<br><br>Methods<br>We performed biophysical phenotyping of circulating immune cells by real-time fluorescence and deformability cytometry (RT-FDC) in 63 SSc patients, 59 rheumatoid arthritis (RA) patients, 28 antineutrophil cytoplasmic antibody–associated vasculitis (AAV) patients, and 22 age- and sex-matched healthy donors.<br><br>Results<br>We identified a specific signature of biophysical properties of circulating immune cells in SSc patients that was mainly driven by monocytes. Since it is absent in RA and AAV, this signature reflects an SSc-specific monocyte activation rather than general inflammation. The biophysical properties of monocytes indicate current disease activity, the extent of skin or lung fibrosis, and the severity of manifestations of microvascular damage, as well as the risk of disease progression in SSc patients.<br><br>Conclusion<br>Changes in the biophysical properties of circulating immune cells reflect their pathologic activation in SSc patients and are associated with clinical outcomes. As a high-throughput approach that requires minimal preparations, RT-FDC–based biophysical phenotyping of monocytes can serve as a tool for the evaluation and risk stratification of patients with SSc.
Dynamics of cell rounding during detachment
Agata Nyga, Katarzyna Plak, Martin Kräter, Marta Urbanska, Kyoohyun Kim, Jochen Guck, Buzz Baum
Animal cells undergo repeated shape changes, for example during mitotic cell rounding. Cell rounding can be also observed in interphase cells, for example when cancer cells switch from a mesenchymal to an amoeboid mode of cell migration. Nevertheless, it remains unclear how interphase cells round up. In this paper we show that a partial loss of substrate adhesion triggers actomyosin-dependent cortical remodelling and ERM activation, which facilitates further adhesion loss causing cells to round. While the path of rounding in this case superficially resembles mitotic rounding in involving ERM phosphorylation, retraction fiber formation, and cortical remodelling downstream of ROCK, it does not require Ect2. This work provides insights into the way partial loss of adhesion actives cortical remodelling to drive cell detachment from the substrate. This is important to consider when studying the mechanics of cells in suspension, for example using methods like real-time deformability cytometry (RT-DC).
Rapid single-cell physical phenotyping of mechanically dissociated tissue biopsies
Despina Soteriou, Markéta Kubánková, Christine Schweitzer, Rocío López-Posadas, Rahmita Pradhan, Oana-Maria Thoma, Andrea-Hermina Györfi, Alexandru-Emil Matei, Maximilian Waldner, et al.
nature biomedical engineering
(2023)
|
Journal
|
PDF
During surgery, rapid and accurate histopathological diagnosis is essential for clinical decision making. Yet the prevalent method of intra-operative consultation pathology is intensive in time, labour and costs, and requires the expertise of trained pathologists. Here we show that biopsy samples can be analysed within 30 min by sequentially assessing the physical phenotypes of singularized suspended cells dissociated from the tissues. The diagnostic method combines the enzyme-free mechanical dissociation of tissues, real-time deformability cytometry at rates of 100–1,000 cells s−1 and data analysis by unsupervised dimensionality reduction and logistic regression. Physical phenotype parameters extracted from brightfield images of single cells distinguished cell subpopulations in various tissues, enhancing or even substituting measurements of molecular markers. We used the method to quantify the degree of colon inflammation and to accurately discriminate healthy and tumorous tissue in biopsy samples of mouse and human colons. This fast and label-free approach may aid the intra-operative detection of pathological changes in solid biopsies.
Das Max-Planck-Institut hat seinen Sitz direkt am Südgelände der Friedrich-Alexander-Universität Erlangen-Nürnberg, auf dem die Technische Fakultät angesiedelt ist. Informationen zur Anfahrt finden Sie hier.
MPL Newsletter
Bleiben Sie auf dem Laufenden mit unserem Newsletter!