Welcome to the website of the Neuroregeneration lab

The research group Neuroregeneration is associated with the division Biological Optomechanics at the Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin. Our research addresses the question:

 

Why are some vertebrates able to regenerate the spinal cord after injury?

 

Spinal cord injury in humans leads to permanent physical impairments because severed nerve fibres (axons) do not regrow across the lesion site. In contrast, zebrafish exhibit long distance axonal regrowth even after complete transection of the spinal cord, leading to substantial recovery of locomotor function. This offers a vertebrate model to elucidate the parameters required to enable axonal regrowth after SCI. Specifically, we focus on elucidating the composition, regulation and mechanical properties of the non-neural lesion environment, which in contrast to mammals, is permissive to axonal growth in zebrafish. To this end we are using a broad range of state-of-the-art optical imaging technologies, such as Brillouin microscopy, novel 3D in vitro scaffolds made of compliant hydrogel beads, and genetic and molecular biology tools. Our long-term goal is to provide clues on how severed axonal connections can be functionally repaired in the human spinal cord. Here you will find our most recent research.


If you are interested in joining the group as a Master student, PhD student or Postdoc please contact us.

Contact

daniel.wehner@mpl.mpg.de

Guck Division

Wehner Junior Research Group

MPI for the Science of Light

Staudtstr. 2

D-91058 Erlangen, Germany

 

twitter: @Wehnerlab

MPL Shop

The World of Light to Touch and Wear.

Shop now!

MPL Research Centers and Schools