Muhammad Abdullah Butt, Paul Roth, Gordon Wong, Michael Frosz, Luis Sanchez-Soto, E. A. Anashkina, A. V. Andrianov, Peter Banzer, Philip Russell, et al.
Polarization-preserving fibers maintain the two polarization states of an orthogonal basis. Quantum communication, however, requires sending at least two nonorthogonal states and these cannot both be preserved. We present an alternative scheme that allows for using polarization encoding in a fiber not only in the discrete, but also in the continuous-variable regime. For the example of a helically twisted photonic crystal fiber, we experimentally demonstrate that using appropriate nonorthogonal modes, the polarization-preserving fiber does not fully scramble these modes over the full Poincaré sphere, but that the output polarization will stay on a great circle; that is, within a one-dimensional protected subspace, which can be parametrized by a single variable. This allows for more efficient measurements of quantum excitations in nonorthogonal modes.
Modulational instability and spectral broadening of vortex modes in chiral photonic crystal fibers
Paul Roth, Philip Russell, Michael Frosz, Yang Chen, Gordon Wong
Journal of Lightwave Technology
41(7)
2061-2069
(2023)
|
Journal
We report on intra- and inter-modal four-wave-mixing (FWM) in N-fold rotationally symmetric (C_N) single- and multi-core chiral photonic crystal fiber (PCF), created by spinning the preform during fiber drawing. The non-circular modal field is forced to rotate as it propagates along the fiber, resulting in circular birefringence and robust maintenance of circular polarization state. Multi-core chiral C_N PCF supports vortex-carrying helical Bloch modes (HBMs) in which the degeneracy between clockwise and counter-clockwise vortices is lifted. This makes possible new kinds of intermodal polarization modulational instability (PMI). We develop PMI theory for vortex HBMs, and illustrate the results by a series of experiments in which two or more PMI sidebands with different vorticities and polarization states are selectively generated by adjusting the polarization state and topological charge of the pump light. In every case both the topological charge and the spin of the pump light are conserved. We also report generation of a broadband supercontinuum in a single circularly polarized vortex mode.
Selective phase filtering of charged beams with laser-driven antiresonant hollow-core fibers
Luca Genovese, Max Kellermeier, Frank Mayet, Klaus Floettmann, Gordon Wong, Michael Frosz, Ralph Assmann, Philip Russell, Francois Lemery
Physical Review Research
5(1)
013096
(2023)
|
Journal
|
PDF
Emerging accelerator concepts increasingly rely on the combination of high-frequency electromagnetic radiation with electron beams, enabling longitudinal phase space manipulation which supports a variety of advanced applications. The handshake between electron beams and radiation is conventionally provided by magnetic undulators which unfortunately require a balance between the electron beam energy, undulator parameters, and laser wavelength. Here we propose a scheme using laser-driven large-core antiresonant optical fibers to manipulate electron beams. We explore two general cases using TM01 and HE11 modes. In the former, we show that large energy modulations O(100 keV). can be achieved while maintaining the overall electron beam quality. Further, we show that by using larger field strengths O(100 MV/m) the resulting transverse forces can be exploited with beam-matching conditions to filter arbitrary phases from the modulated electron bunch, leading to the production of ≈100 attosecond FWHM microbunches. Finally, we also investigate the application of the transverse dipole HE11 mode and find it suitable for supporting time-resolved electron beam measurements with sub-attosecond resolution. We expect the findings to be widely appealing to high-charge pump-probe experiments, metrology, and accelerator science.
Optical Vortex Brillouin Laser
Xinglin Zeng, Philip Russell, Yang Chen, Zheqi Wang, Gordon Wong, Paul Roth, Michael Frosz, Birgit Stiller
Laser & Photonics Reviews
2200277
(2023)
|
Journal
|
PDF
Optical vortices, which have been extensively studied over the last decades, offer an additional degree of freedom useful in many applications, such as optical tweezers and quantum control. Stimulated Brillouin scattering (SBS), providing a narrow linewidth and a strong nonlinear response, has been used to realize quasi-continuous wave lasers. Here, stable oscillation of optical vortices and acoustic modes in a Brillouin laser based on chiral photonic crystal fiber (PCF) is reported, which robustly supports helical Bloch modes (HBMs) that carry circularly polarized optical vortex and display circular birefringence. A narrow-linewidth Brillouin fiber laser that stably emits 1st- and 2nd-order vortex-carrying HBMs is implemented. Angular momentum conservation selection rules dictate that pump and backward Brillouin signals have opposite topological charge and spin. Additionally, it is shown that when the chiral PCF is placed within a laser ring cavity, the linewidth-narrowing associated with lasing permits the peak of the Brillouin gain that corresponds to acoustic mode to be measured with resolution of 10 kHz and accuracy of 520 kHz. The results pave the way to a new generation of vortex-carrying SBS systems with applications in optical tweezers, quantum information processing, and vortex-carrying nonreciprocal systems.
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2005 to 2008
MPL Newsletter
Stay up-to-date with MPL’s latest research via our Newsletter.